Spaces:
Sleeping
Sleeping
Ahmed Tarek
commited on
Commit
·
80f913d
1
Parent(s):
e3ca660
changes
Browse files- .DS_Store +0 -0
- Dockerfile +28 -10
- backend/.DS_Store +0 -0
- backend/app/database/base.py +21 -3
- backend/app/database/chatbot.py +0 -9
- backend/app/helper/dependencies.py +3 -3
- requirements.txt +6 -5
- services/.DS_Store +0 -0
- services/embedding_models/MiniLM_L12_v2_model.py +133 -60
- services/vector_db/optimized_vector_db.py +104 -93
- services/vector_db/similarity_model.py +1 -1
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
Dockerfile
CHANGED
|
@@ -1,18 +1,36 @@
|
|
| 1 |
-
# Use a minimal Python base image
|
| 2 |
FROM python:3.10-slim
|
| 3 |
|
| 4 |
-
# Set working directory
|
| 5 |
WORKDIR /app
|
| 6 |
|
| 7 |
-
# Install dependencies
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
COPY requirements.txt .
|
| 9 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
| 10 |
|
| 11 |
-
# Copy app code
|
| 12 |
-
COPY . .
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
FROM python:3.10-slim
|
| 2 |
|
|
|
|
| 3 |
WORKDIR /app
|
| 4 |
|
| 5 |
+
# Install system dependencies + filelock for TinyDB
|
| 6 |
+
RUN apt-get update && \
|
| 7 |
+
apt-get install -y --no-install-recommends g++ && \
|
| 8 |
+
rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
# Create directory structure with fail-safes
|
| 11 |
+
RUN mkdir -p /.cache/huggingface/hub && \
|
| 12 |
+
mkdir -p /tmp/hf_cache && \
|
| 13 |
+
chmod -R 777 /tmp/hf_cache && \
|
| 14 |
+
chmod -R 777 /.cache # Full permissions
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Install Python dependencies (add filelock)
|
| 18 |
COPY requirements.txt .
|
| 19 |
+
RUN pip install --no-cache-dir -r requirements.txt filelock
|
| 20 |
|
| 21 |
+
# Copy app code (ensure proper permissions)
|
| 22 |
+
COPY --chmod=777 . .
|
| 23 |
|
| 24 |
+
# Environment configuration
|
| 25 |
+
ENV HF_HOME=/tmp/hf_cache \
|
| 26 |
+
PYTHONUNBUFFERED=1
|
| 27 |
|
| 28 |
+
ENV ONNX_MODELS_DIR=/tmp
|
| 29 |
+
ENV HF_HOME=/.cache/huggingface/hub
|
| 30 |
+
|
| 31 |
+
# Health check (optional but recommended)
|
| 32 |
+
HEALTHCHECK --interval=30s --timeout=3s \
|
| 33 |
+
CMD curl -f http://localhost:7860/ || exit 1
|
| 34 |
+
|
| 35 |
+
EXPOSE 7860
|
| 36 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
backend/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
backend/app/database/base.py
CHANGED
|
@@ -1,8 +1,26 @@
|
|
| 1 |
from tinydb import TinyDB
|
|
|
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
class BaseDB:
|
| 5 |
def __init__(self):
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from tinydb import TinyDB
|
| 2 |
+
from filelock import FileLock
|
| 3 |
import os
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
logging.basicConfig(level=logging.INFO)
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
class BaseDB:
|
| 11 |
def __init__(self):
|
| 12 |
+
self.db_path = "/.cache/huggingface/hub/my_app_data/db/database.json"
|
| 13 |
+
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
with FileLock(f"{self.db_path}.lock"):
|
| 17 |
+
# Handle corruption
|
| 18 |
+
try:
|
| 19 |
+
self.db = TinyDB(self.db_path)
|
| 20 |
+
except json.JSONDecodeError:
|
| 21 |
+
logger.warning("DB corrupted - resetting")
|
| 22 |
+
os.rename(self.db_path, f"{self.db_path}.bak")
|
| 23 |
+
self.db = TinyDB(self.db_path)
|
| 24 |
+
except Exception as e:
|
| 25 |
+
logger.error(f"DB init failed: {e}")
|
| 26 |
+
raise
|
backend/app/database/chatbot.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
from pydantic import BaseModel
|
| 2 |
-
from typing import List, Optional
|
| 3 |
-
|
| 4 |
-
class ChatRequest(BaseModel):
|
| 5 |
-
message: str
|
| 6 |
-
|
| 7 |
-
class ChatResponse(BaseModel):
|
| 8 |
-
response: str
|
| 9 |
-
recommendations: List[str]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend/app/helper/dependencies.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from services.embedding_models.MiniLM_L12_v2_model import ONNXMiniLMModel
|
| 2 |
-
from services.vector_db.
|
| 3 |
from backend.app.database.users import UserDB
|
| 4 |
from backend.app.database.events import EventDB
|
| 5 |
from backend.app.database.travels import TravelDB
|
|
@@ -12,8 +12,8 @@ import os
|
|
| 12 |
embedding_lock = asyncio.Lock()
|
| 13 |
assistant = BilingualTravelAssistant()
|
| 14 |
embedding_model = ONNXMiniLMModel()
|
| 15 |
-
events_vector_db = VectorDB(
|
| 16 |
-
travels_vector_db = VectorDB(
|
| 17 |
event_db = EventDB()
|
| 18 |
travel_db = TravelDB()
|
| 19 |
user_db = UserDB()
|
|
|
|
| 1 |
from services.embedding_models.MiniLM_L12_v2_model import ONNXMiniLMModel
|
| 2 |
+
from services.vector_db.optimized_vector_db import VectorDB
|
| 3 |
from backend.app.database.users import UserDB
|
| 4 |
from backend.app.database.events import EventDB
|
| 5 |
from backend.app.database.travels import TravelDB
|
|
|
|
| 12 |
embedding_lock = asyncio.Lock()
|
| 13 |
assistant = BilingualTravelAssistant()
|
| 14 |
embedding_model = ONNXMiniLMModel()
|
| 15 |
+
events_vector_db = VectorDB()
|
| 16 |
+
travels_vector_db = VectorDB()
|
| 17 |
event_db = EventDB()
|
| 18 |
travel_db = TravelDB()
|
| 19 |
user_db = UserDB()
|
requirements.txt
CHANGED
|
@@ -18,7 +18,6 @@ Deprecated==1.2.18
|
|
| 18 |
distro==1.9.0
|
| 19 |
durationpy==0.9
|
| 20 |
exceptiongroup==1.2.2
|
| 21 |
-
faiss-cpu==1.10.0
|
| 22 |
fastapi==0.115.9
|
| 23 |
filelock==3.18.0
|
| 24 |
flatbuffers==25.2.10
|
|
@@ -54,7 +53,6 @@ networkx==3.2.1
|
|
| 54 |
numpy==1.26.4
|
| 55 |
oauthlib==3.2.2
|
| 56 |
onnx==1.16.2
|
| 57 |
-
onnxruntime==1.16.3
|
| 58 |
opentelemetry-api==1.32.1
|
| 59 |
opentelemetry-exporter-otlp-proto-common==1.32.1
|
| 60 |
opentelemetry-exporter-otlp-proto-grpc==1.32.1
|
|
@@ -91,7 +89,6 @@ rich==14.0.0
|
|
| 91 |
rpds-py==0.24.0
|
| 92 |
rsa==4.9.1
|
| 93 |
safetensors==0.5.3
|
| 94 |
-
sentence_transformers==4.1.0
|
| 95 |
shellingham==1.5.4
|
| 96 |
six==1.17.0
|
| 97 |
sniffio==1.3.1
|
|
@@ -102,9 +99,7 @@ tenacity==9.1.2
|
|
| 102 |
tinydb==4.8.2
|
| 103 |
tokenizers==0.21.1
|
| 104 |
tomli==2.2.1
|
| 105 |
-
torch==2.6.0
|
| 106 |
tqdm==4.67.1
|
| 107 |
-
transformers==4.51.3
|
| 108 |
typer==0.15.2
|
| 109 |
typing-inspection==0.4.0
|
| 110 |
typing_extensions==4.13.2
|
|
@@ -115,3 +110,9 @@ websocket-client==1.8.0
|
|
| 115 |
websockets==15.0.1
|
| 116 |
wrapt==1.17.2
|
| 117 |
zipp==3.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
distro==1.9.0
|
| 19 |
durationpy==0.9
|
| 20 |
exceptiongroup==1.2.2
|
|
|
|
| 21 |
fastapi==0.115.9
|
| 22 |
filelock==3.18.0
|
| 23 |
flatbuffers==25.2.10
|
|
|
|
| 53 |
numpy==1.26.4
|
| 54 |
oauthlib==3.2.2
|
| 55 |
onnx==1.16.2
|
|
|
|
| 56 |
opentelemetry-api==1.32.1
|
| 57 |
opentelemetry-exporter-otlp-proto-common==1.32.1
|
| 58 |
opentelemetry-exporter-otlp-proto-grpc==1.32.1
|
|
|
|
| 89 |
rpds-py==0.24.0
|
| 90 |
rsa==4.9.1
|
| 91 |
safetensors==0.5.3
|
|
|
|
| 92 |
shellingham==1.5.4
|
| 93 |
six==1.17.0
|
| 94 |
sniffio==1.3.1
|
|
|
|
| 99 |
tinydb==4.8.2
|
| 100 |
tokenizers==0.21.1
|
| 101 |
tomli==2.2.1
|
|
|
|
| 102 |
tqdm==4.67.1
|
|
|
|
| 103 |
typer==0.15.2
|
| 104 |
typing-inspection==0.4.0
|
| 105 |
typing_extensions==4.13.2
|
|
|
|
| 110 |
websockets==15.0.1
|
| 111 |
wrapt==1.17.2
|
| 112 |
zipp==3.21.0
|
| 113 |
+
sentence-transformers>=2.7.0
|
| 114 |
+
transformers>=4.41.0
|
| 115 |
+
onnxruntime>=1.17.0
|
| 116 |
+
torch>=2.2.0
|
| 117 |
+
huggingface-hub>=0.20.0
|
| 118 |
+
faiss-cpu>=1.7.4
|
services/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
services/embedding_models/MiniLM_L12_v2_model.py
CHANGED
|
@@ -2,75 +2,148 @@ import os
|
|
| 2 |
import numpy as np
|
| 3 |
import onnxruntime as ort
|
| 4 |
from pathlib import Path
|
| 5 |
-
|
| 6 |
-
from
|
| 7 |
-
from transformers.utils import logging
|
| 8 |
-
from transformers import AutoTokenizer, AutoModel
|
| 9 |
|
| 10 |
-
logging
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
class ONNXMiniLMModel:
|
| 13 |
def __init__(self,
|
| 14 |
-
model_name="sentence-transformers/paraphrase-multilingual-
|
| 15 |
-
onnx_path="/tmp/
|
| 16 |
-
|
|
|
|
| 17 |
self.model_name = model_name
|
| 18 |
self.onnx_path = onnx_path
|
| 19 |
-
self.
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def export_to_onnx(self):
|
| 31 |
-
model
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
def mean_pooling(self, token_embeddings, attention_mask):
|
|
|
|
| 45 |
input_mask_expanded = np.expand_dims(attention_mask, -1).astype(np.float32)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def encode(self, texts, normalize=True, debug=False):
|
| 50 |
-
# Tokenize with return_token_type_ids=True
|
| 51 |
-
tokens = self.tokenizer(
|
| 52 |
-
texts,
|
| 53 |
-
padding=True,
|
| 54 |
-
truncation=True,
|
| 55 |
-
return_tensors="np",
|
| 56 |
-
return_token_type_ids=True # Critical addition
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
if debug:
|
| 60 |
-
print("[DEBUG] Tokens:", self.tokenizer.convert_ids_to_tokens(tokens["input_ids"][0]))
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import onnxruntime as ort
|
| 4 |
from pathlib import Path
|
| 5 |
+
import logging
|
| 6 |
+
from typing import List, Union
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Configure logging
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
+
class ONNXMiniLMModel:
|
| 13 |
def __init__(self,
|
| 14 |
+
model_name="sentence-transformers/paraphrase-multilingual-minilm-l12-v2",
|
| 15 |
+
onnx_path="/tmp/minilm.onnx",
|
| 16 |
+
dimension=384): # Matching VectorDB dimension
|
| 17 |
+
|
| 18 |
self.model_name = model_name
|
| 19 |
self.onnx_path = onnx_path
|
| 20 |
+
self.dimension = dimension
|
| 21 |
|
| 22 |
+
try:
|
| 23 |
+
# Configure cache and model paths
|
| 24 |
+
cache_dir = "/tmp/hf_cache"
|
| 25 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 26 |
+
os.environ["HF_HOME"] = cache_dir
|
| 27 |
+
|
| 28 |
+
# Initialize model
|
| 29 |
+
logger.info(f"Loading model {model_name}...")
|
| 30 |
+
from sentence_transformers import SentenceTransformer
|
| 31 |
+
self.st_model = SentenceTransformer(
|
| 32 |
+
model_name,
|
| 33 |
+
cache_folder=cache_dir,
|
| 34 |
+
device="cpu"
|
| 35 |
+
)
|
| 36 |
+
self.tokenizer = self.st_model.tokenizer
|
| 37 |
+
self.model = self.st_model._first_module().auto_model
|
| 38 |
+
self.model.eval()
|
| 39 |
+
|
| 40 |
+
# Convert to ONNX if needed
|
| 41 |
+
if not os.path.exists(onnx_path):
|
| 42 |
+
self.export_to_onnx()
|
| 43 |
+
|
| 44 |
+
# Initialize ONNX runtime
|
| 45 |
+
logger.info("Creating ONNX inference session...")
|
| 46 |
+
self.session = ort.InferenceSession(
|
| 47 |
+
onnx_path,
|
| 48 |
+
providers=['CPUExecutionProvider']
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
logger.info(f"Model initialized with dimension {dimension}")
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logger.error(f"Model initialization failed: {str(e)}")
|
| 55 |
+
raise
|
| 56 |
|
| 57 |
def export_to_onnx(self):
|
| 58 |
+
"""Export the model to ONNX format with proper configuration"""
|
| 59 |
+
import torch
|
| 60 |
+
logger.info(f"Exporting model to ONNX at {self.onnx_path}...")
|
| 61 |
+
|
| 62 |
+
# Create dummy inputs with correct dimensions and types
|
| 63 |
+
dummy_input = (
|
| 64 |
+
torch.randint(0, 100, (1, 128), dtype=torch.long), # input_ids
|
| 65 |
+
torch.ones((1, 128), dtype=torch.long), # attention_mask
|
| 66 |
+
torch.zeros((1, 128), dtype=torch.long) # token_type_ids
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Export configuration
|
| 70 |
+
torch.onnx.export(
|
| 71 |
+
self.model,
|
| 72 |
+
dummy_input,
|
| 73 |
+
self.onnx_path,
|
| 74 |
+
opset_version=14,
|
| 75 |
+
input_names=["input_ids", "attention_mask", "token_type_ids"],
|
| 76 |
+
output_names=["output"],
|
| 77 |
+
dynamic_axes={
|
| 78 |
+
'input_ids': {0: 'batch', 1: 'sequence'},
|
| 79 |
+
'attention_mask': {0: 'batch', 1: 'sequence'},
|
| 80 |
+
'token_type_ids': {0: 'batch', 1: 'sequence'},
|
| 81 |
+
'output': {0: 'batch'}
|
| 82 |
+
},
|
| 83 |
+
do_constant_folding=True
|
| 84 |
+
)
|
| 85 |
+
logger.info("ONNX export completed successfully")
|
| 86 |
|
| 87 |
def mean_pooling(self, token_embeddings, attention_mask):
|
| 88 |
+
"""Apply mean pooling to get sentence embeddings"""
|
| 89 |
input_mask_expanded = np.expand_dims(attention_mask, -1).astype(np.float32)
|
| 90 |
+
sum_embeddings = np.sum(token_embeddings * input_mask_expanded, axis=1)
|
| 91 |
+
sum_mask = np.clip(np.sum(input_mask_expanded, axis=1), 1e-9, None)
|
| 92 |
+
return sum_embeddings / sum_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
def encode(self, texts: Union[str, List[str]], normalize: bool = True) -> np.ndarray:
|
| 95 |
+
"""
|
| 96 |
+
Generate embeddings for input text(s)
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
texts: Single text string or list of texts
|
| 100 |
+
normalize: Whether to normalize embeddings to unit length
|
| 101 |
+
|
| 102 |
+
Returns:
|
| 103 |
+
numpy.ndarray: Embeddings array of shape (num_texts, dimension)
|
| 104 |
+
"""
|
| 105 |
+
try:
|
| 106 |
+
# Ensure input is a list
|
| 107 |
+
if isinstance(texts, str):
|
| 108 |
+
texts = [texts]
|
| 109 |
+
|
| 110 |
+
# Tokenize with proper settings for multilingual model
|
| 111 |
+
tokens = self.tokenizer(
|
| 112 |
+
texts,
|
| 113 |
+
padding=True,
|
| 114 |
+
truncation=True,
|
| 115 |
+
max_length=512,
|
| 116 |
+
return_tensors="np",
|
| 117 |
+
return_token_type_ids=True
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Prepare ONNX inputs
|
| 121 |
+
inputs = {
|
| 122 |
+
"input_ids": tokens["input_ids"].astype(np.int64),
|
| 123 |
+
"attention_mask": tokens["attention_mask"].astype(np.int64),
|
| 124 |
+
"token_type_ids": tokens["token_type_ids"].astype(np.int64)
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
# Run inference
|
| 128 |
+
outputs = self.session.run(None, inputs)
|
| 129 |
+
embeddings = self.mean_pooling(outputs[0], tokens["attention_mask"])
|
| 130 |
+
|
| 131 |
+
# Normalize if requested
|
| 132 |
+
if normalize:
|
| 133 |
+
norms = np.linalg.norm(embeddings, axis=1, keepdims=True)
|
| 134 |
+
embeddings = embeddings / np.clip(norms, 1e-9, None)
|
| 135 |
+
|
| 136 |
+
# Ensure correct dimensionality
|
| 137 |
+
if embeddings.shape[1] != self.dimension:
|
| 138 |
+
logger.warning(f"Embedding dimension mismatch: {embeddings.shape[1]} != {self.dimension}")
|
| 139 |
+
embeddings = embeddings[:, :self.dimension] # Truncate if needed
|
| 140 |
+
|
| 141 |
+
return embeddings.astype(np.float32) # Ensure float32 for FAISS
|
| 142 |
+
|
| 143 |
+
except Exception as e:
|
| 144 |
+
logger.error(f"Embedding generation failed: {str(e)}")
|
| 145 |
+
raise
|
| 146 |
+
|
| 147 |
+
def get_dimension(self) -> int:
|
| 148 |
+
"""Return the embedding dimension"""
|
| 149 |
+
return self.dimension
|
services/vector_db/optimized_vector_db.py
CHANGED
|
@@ -6,15 +6,13 @@ from typing import List
|
|
| 6 |
|
| 7 |
|
| 8 |
class VectorDB:
|
| 9 |
-
def __init__(self, db_path="
|
| 10 |
self.db_path = os.path.join(db_path)
|
| 11 |
self.index_path = os.path.join(self.db_path, "faiss_index.bin")
|
| 12 |
-
self.
|
| 13 |
self.dimension = dimension
|
| 14 |
self.index = None
|
| 15 |
-
self.
|
| 16 |
-
self.int_to_id = {} # {faiss_int_id: "your_str_id"}
|
| 17 |
-
self.vectors = {} # {int_id: vector} for fast access
|
| 18 |
self._initialize_storage()
|
| 19 |
|
| 20 |
def _initialize_storage(self):
|
|
@@ -23,16 +21,13 @@ class VectorDB:
|
|
| 23 |
if not os.path.exists(self.db_path):
|
| 24 |
os.makedirs(self.db_path)
|
| 25 |
|
| 26 |
-
if os.path.exists(self.index_path) and os.path.exists(self.
|
| 27 |
self.index = faiss.read_index(self.index_path)
|
| 28 |
-
with open(self.
|
| 29 |
-
|
| 30 |
-
self.id_to_int = data.get('id_to_int', {})
|
| 31 |
-
self.int_to_id = data.get('int_to_id', {})
|
| 32 |
-
self.vectors = data.get('vectors', {})
|
| 33 |
else:
|
| 34 |
-
|
| 35 |
-
self.
|
| 36 |
|
| 37 |
print(f"Storage initialized. Current size: {self.index.ntotal}")
|
| 38 |
except Exception as e:
|
|
@@ -55,61 +50,78 @@ class VectorDB:
|
|
| 55 |
self.update_embeddings(data, model)
|
| 56 |
|
| 57 |
def update_embeddings(self, data, model):
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
-
self.
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
|
|
|
| 91 |
|
| 92 |
def delete_items(self, item_ids):
|
| 93 |
try:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
return
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
self._save_to_disk()
|
| 112 |
-
print(f"Successfully deleted {len(
|
|
|
|
| 113 |
except Exception as e:
|
| 114 |
print(f"Error in delete_items: {e}")
|
| 115 |
raise
|
|
@@ -117,12 +129,8 @@ class VectorDB:
|
|
| 117 |
def _save_to_disk(self):
|
| 118 |
try:
|
| 119 |
faiss.write_index(self.index, self.index_path)
|
| 120 |
-
with open(self.
|
| 121 |
-
pickle.dump(
|
| 122 |
-
'id_to_int': self.id_to_int,
|
| 123 |
-
'int_to_id': self.int_to_id,
|
| 124 |
-
'vectors': self.vectors
|
| 125 |
-
}, f, protocol=pickle.HIGHEST_PROTOCOL)
|
| 126 |
except Exception as e:
|
| 127 |
print(f"Error saving to disk: {e}")
|
| 128 |
raise
|
|
@@ -130,41 +138,37 @@ class VectorDB:
|
|
| 130 |
def get_similar_by_ids(self, item_ids: List[str], top_k: int = 5):
|
| 131 |
try:
|
| 132 |
all_recommendations = []
|
|
|
|
| 133 |
|
| 134 |
for item_id in item_ids:
|
| 135 |
-
if item_id not in self.
|
| 136 |
-
continue
|
| 137 |
-
int_id = self.id_to_int[item_id]
|
| 138 |
-
if int_id not in self.vectors:
|
| 139 |
-
print(f"Warning: Vector for ID {item_id} not found in cache.")
|
| 140 |
continue
|
| 141 |
|
| 142 |
-
query_vector = self.
|
| 143 |
-
distances, indices = self.index.search(
|
| 144 |
-
query_vector,
|
| 145 |
-
top_k + len(item_ids)
|
| 146 |
-
)
|
| 147 |
|
| 148 |
for idx, distance in zip(indices[0], distances[0]):
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
| 151 |
all_recommendations.append({
|
| 152 |
'id': current_id,
|
| 153 |
'distance': float(distance)
|
| 154 |
})
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
for rec in sorted(all_recommendations, key=lambda x: x['distance']):
|
| 159 |
-
if rec['id'] not in
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
if len(
|
| 163 |
break
|
| 164 |
|
| 165 |
return {
|
| 166 |
"query_ids": item_ids,
|
| 167 |
-
"recommendations":
|
| 168 |
}
|
| 169 |
|
| 170 |
except Exception as e:
|
|
@@ -173,21 +177,28 @@ class VectorDB:
|
|
| 173 |
|
| 174 |
def search_by_query(self, query: str, model, top_k: int):
|
| 175 |
try:
|
| 176 |
-
query_embedding = model.encode(query).astype(
|
| 177 |
actual_top_k = min(top_k, self.index.ntotal) if self.index.ntotal > 0 else 0
|
|
|
|
| 178 |
if actual_top_k == 0:
|
| 179 |
return []
|
| 180 |
|
| 181 |
-
distances, indices = self.index.search(
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
recommendations = [
|
| 187 |
-
{"id": self.int_to_id.get(idx), "similarity_score": 1 - (dist / 2)}
|
| 188 |
-
for idx, dist in zip(indices[0], distances[0]) if self.int_to_id.get(idx)
|
| 189 |
-
]
|
| 190 |
-
return recommendations[:top_k]
|
| 191 |
except Exception as e:
|
| 192 |
print(f"Error in search_by_query: {e}")
|
| 193 |
raise
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class VectorDB:
|
| 9 |
+
def __init__(self, db_path="/.cache/huggingface/hub/my_app_data/vector_db", dimension=384):
|
| 10 |
self.db_path = os.path.join(db_path)
|
| 11 |
self.index_path = os.path.join(self.db_path, "faiss_index.bin")
|
| 12 |
+
self.metadata_path = os.path.join(self.db_path, "metadata.pkl")
|
| 13 |
self.dimension = dimension
|
| 14 |
self.index = None
|
| 15 |
+
self.metadata = {}
|
|
|
|
|
|
|
| 16 |
self._initialize_storage()
|
| 17 |
|
| 18 |
def _initialize_storage(self):
|
|
|
|
| 21 |
if not os.path.exists(self.db_path):
|
| 22 |
os.makedirs(self.db_path)
|
| 23 |
|
| 24 |
+
if os.path.exists(self.index_path) and os.path.exists(self.metadata_path):
|
| 25 |
self.index = faiss.read_index(self.index_path)
|
| 26 |
+
with open(self.metadata_path, 'rb') as f:
|
| 27 |
+
self.metadata = pickle.load(f)
|
|
|
|
|
|
|
|
|
|
| 28 |
else:
|
| 29 |
+
self.index = faiss.IndexFlatL2(self.dimension)
|
| 30 |
+
self.metadata = {}
|
| 31 |
|
| 32 |
print(f"Storage initialized. Current size: {self.index.ntotal}")
|
| 33 |
except Exception as e:
|
|
|
|
| 50 |
self.update_embeddings(data, model)
|
| 51 |
|
| 52 |
def update_embeddings(self, data, model):
|
| 53 |
+
try:
|
| 54 |
+
input_ids = {str(item['id']) for item in data}
|
| 55 |
+
existing_ids = set(self.metadata.keys())
|
| 56 |
+
|
| 57 |
+
update_ids = input_ids & existing_ids
|
| 58 |
+
create_ids = input_ids - existing_ids
|
| 59 |
+
|
| 60 |
+
update_items = [item for item in data if str(item['id']) in update_ids]
|
| 61 |
+
create_items = [item for item in data if str(item['id']) in create_ids]
|
| 62 |
+
|
| 63 |
+
# Batch process descriptions and embeddings
|
| 64 |
+
all_items = update_items + create_items
|
| 65 |
+
descriptions = [self._format_description(item) for item in all_items]
|
| 66 |
+
embeddings = model.encode(descriptions).astype('float32')
|
| 67 |
+
|
| 68 |
+
# Split embeddings back to update/create
|
| 69 |
+
update_embeddings = embeddings[:len(update_items)]
|
| 70 |
+
create_embeddings = embeddings[len(update_items):]
|
| 71 |
+
|
| 72 |
+
# Update existing items
|
| 73 |
+
for i, item in enumerate(update_items):
|
| 74 |
+
item_id = str(item['id'])
|
| 75 |
+
self.metadata[item_id].update({
|
| 76 |
+
'vector': update_embeddings[i]
|
| 77 |
+
})
|
| 78 |
+
|
| 79 |
+
# Add new items
|
| 80 |
+
for i, item in enumerate(create_items):
|
| 81 |
+
item_id = str(item['id'])
|
| 82 |
+
self.metadata[item_id] = {
|
| 83 |
+
'id': item_id,
|
| 84 |
+
'vector': create_embeddings[i]
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
# Rebuild index only once
|
| 88 |
+
all_vectors = [self.metadata[id]['vector'] for id in self.metadata]
|
| 89 |
+
all_vectors_np = np.array(all_vectors).astype('float32')
|
| 90 |
+
self.index = faiss.IndexFlatL2(self.dimension)
|
| 91 |
+
self.index.add(all_vectors_np)
|
| 92 |
|
| 93 |
+
self._save_to_disk()
|
| 94 |
+
print(f"Successfully processed {len(data)} items: "
|
| 95 |
+
f"{len(update_items)} updated, {len(create_items)} created")
|
| 96 |
|
| 97 |
+
except Exception as e:
|
| 98 |
+
print(f"Error in update_embeddings: {e}")
|
| 99 |
+
raise
|
| 100 |
|
| 101 |
def delete_items(self, item_ids):
|
| 102 |
try:
|
| 103 |
+
ids_to_delete = {str(id) for id in item_ids}
|
| 104 |
+
existing_ids = set(self.metadata.keys())
|
| 105 |
+
valid_ids = ids_to_delete & existing_ids
|
| 106 |
+
|
| 107 |
+
if not valid_ids:
|
| 108 |
+
print("No valid items to delete.")
|
| 109 |
return
|
| 110 |
|
| 111 |
+
for item_id in valid_ids:
|
| 112 |
+
del self.metadata[item_id]
|
| 113 |
|
| 114 |
+
if self.metadata:
|
| 115 |
+
remaining_vectors = [self.metadata[id]['vector'] for id in self.metadata]
|
| 116 |
+
remaining_vectors_np = np.array(remaining_vectors).astype('float32')
|
| 117 |
+
self.index = faiss.IndexFlatL2(self.dimension)
|
| 118 |
+
self.index.add(remaining_vectors_np)
|
| 119 |
+
else:
|
| 120 |
+
self.index = faiss.IndexFlatL2(self.dimension)
|
| 121 |
|
| 122 |
self._save_to_disk()
|
| 123 |
+
print(f"Successfully deleted {len(valid_ids)} items")
|
| 124 |
+
|
| 125 |
except Exception as e:
|
| 126 |
print(f"Error in delete_items: {e}")
|
| 127 |
raise
|
|
|
|
| 129 |
def _save_to_disk(self):
|
| 130 |
try:
|
| 131 |
faiss.write_index(self.index, self.index_path)
|
| 132 |
+
with open(self.metadata_path, 'wb') as f:
|
| 133 |
+
pickle.dump(self.metadata, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
except Exception as e:
|
| 135 |
print(f"Error saving to disk: {e}")
|
| 136 |
raise
|
|
|
|
| 138 |
def get_similar_by_ids(self, item_ids: List[str], top_k: int = 5):
|
| 139 |
try:
|
| 140 |
all_recommendations = []
|
| 141 |
+
id_list = list(self.metadata.keys())
|
| 142 |
|
| 143 |
for item_id in item_ids:
|
| 144 |
+
if item_id not in self.metadata:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
continue
|
| 146 |
|
| 147 |
+
query_vector = self.metadata[item_id]['vector'].reshape(1, -1).astype('float32')
|
| 148 |
+
distances, indices = self.index.search(query_vector, top_k + len(item_ids))
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
for idx, distance in zip(indices[0], distances[0]):
|
| 151 |
+
if idx < 0 or idx >= len(id_list):
|
| 152 |
+
continue
|
| 153 |
+
current_id = id_list[idx]
|
| 154 |
+
if current_id not in item_ids:
|
| 155 |
all_recommendations.append({
|
| 156 |
'id': current_id,
|
| 157 |
'distance': float(distance)
|
| 158 |
})
|
| 159 |
|
| 160 |
+
seen = set()
|
| 161 |
+
recommendations = []
|
| 162 |
for rec in sorted(all_recommendations, key=lambda x: x['distance']):
|
| 163 |
+
if rec['id'] not in seen:
|
| 164 |
+
seen.add(rec['id'])
|
| 165 |
+
recommendations.append(rec)
|
| 166 |
+
if len(seen) >= top_k:
|
| 167 |
break
|
| 168 |
|
| 169 |
return {
|
| 170 |
"query_ids": item_ids,
|
| 171 |
+
"recommendations": recommendations[:top_k]
|
| 172 |
}
|
| 173 |
|
| 174 |
except Exception as e:
|
|
|
|
| 177 |
|
| 178 |
def search_by_query(self, query: str, model, top_k: int):
|
| 179 |
try:
|
| 180 |
+
query_embedding = model.encode(query).astype('float32').reshape(1, -1)
|
| 181 |
actual_top_k = min(top_k, self.index.ntotal) if self.index.ntotal > 0 else 0
|
| 182 |
+
|
| 183 |
if actual_top_k == 0:
|
| 184 |
return []
|
| 185 |
|
| 186 |
+
distances, indices = self.index.search(query_embedding, actual_top_k)
|
| 187 |
+
id_list = list(self.metadata.keys())
|
| 188 |
+
results = []
|
| 189 |
+
|
| 190 |
+
for i in range(actual_top_k):
|
| 191 |
+
idx = indices[0][i]
|
| 192 |
+
if idx < 0 or idx >= len(id_list):
|
| 193 |
+
continue
|
| 194 |
+
item_id = id_list[idx]
|
| 195 |
+
results.append({
|
| 196 |
+
"id": item_id,
|
| 197 |
+
"similarity_score": 1 - (distances[0][i] / 2)
|
| 198 |
+
})
|
| 199 |
+
|
| 200 |
+
return results
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
except Exception as e:
|
| 203 |
print(f"Error in search_by_query: {e}")
|
| 204 |
raise
|
services/vector_db/similarity_model.py
CHANGED
|
@@ -5,7 +5,7 @@ import pickle
|
|
| 5 |
from typing import List
|
| 6 |
|
| 7 |
class VectorDB:
|
| 8 |
-
def __init__(self, db_path="
|
| 9 |
self.db_path = db_path
|
| 10 |
self.index_path = os.path.join(db_path, "faiss_index.bin")
|
| 11 |
self.metadata_path = os.path.join(db_path, "metadata.pkl")
|
|
|
|
| 5 |
from typing import List
|
| 6 |
|
| 7 |
class VectorDB:
|
| 8 |
+
def __init__(self, db_path="/.cache/huggingface/hub/my_app_data/vector_db", dimension=384):
|
| 9 |
self.db_path = db_path
|
| 10 |
self.index_path = os.path.join(db_path, "faiss_index.bin")
|
| 11 |
self.metadata_path = os.path.join(db_path, "metadata.pkl")
|