File size: 1,808 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
It's like following

best_trials = trainer.hyperparameter_search(
     direction=["minimize", "maximize"],
     backend="optuna",
     hp_space=optuna_hp_space,
     n_trials=20,
     compute_objective=compute_objective,
 )

For raytune, see raytune object_parameter, it's like following:

def ray_hp_space(trial):
     return {
         "learning_rate": tune.loguniform(1e-6, 1e-4),
         "per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
     }

For wandb, see wandb object_parameter, it's like following:

def wandb_hp_space(trial):
     return {
         "method": "random",
         "metric": {"name": "objective", "goal": "minimize"},
         "parameters": {
             "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
             "per_device_train_batch_size": {"values": [16, 32, 64, 128]},
         },
     }

Define a model_init function and pass it to the [Trainer], as an example:

def model_init(trial):
     return AutoModelForSequenceClassification.from_pretrained(
         model_args.model_name_or_path,
         from_tf=bool(".ckpt" in model_args.model_name_or_path),
         config=config,
         cache_dir=model_args.cache_dir,
         revision=model_args.model_revision,
         token=True if model_args.use_auth_token else None,
     )

Create a [Trainer] with your model_init function, training arguments, training and test datasets, and evaluation function:

trainer = Trainer(
     model=None,
     args=training_args,
     train_dataset=small_train_dataset,
     eval_dataset=small_eval_dataset,
     compute_metrics=compute_metrics,
     tokenizer=tokenizer,
     model_init=model_init,
     data_collator=data_collator,
 )

Call hyperparameter search, get the best trial parameters, backend could be "optuna"/"sigopt"/"wandb"/"ray".