Spaces:
Sleeping
Sleeping
File size: 8,487 Bytes
e3d7308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import requests
import base64
from langchain_core.output_parsers import JsonOutputParser
import base64
from langchain.chains import TransformChain
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
from langchain import globals
from langchain_core.runnables import chain
from langchain_core.pydantic_v1 import BaseModel, Field
import os
from openai import OpenAI
from dotenv import load_dotenv
import json
load_dotenv()
# Imgur and SERP API credentials
imgur_client_id = os.getenv('imgur_client_id')
serp_api_key = os.getenv('serp_api_key')
search_endpoint = 'https://serpapi.com/search'
# Set up your OpenAI API key
os.environ["OPENAI_API_KEY"] = os.getenv('gpt_api_key')
# Replace with your OpenAI API key
gpt_api_key = os.getenv('gpt_api_key')
def upload_image_to_imgur(image_path):
headers = {'Authorization': f'Client-ID {imgur_client_id}'}
data = {'image': open(image_path, 'rb').read()}
response = requests.post('https://api.imgur.com/3/image', headers=headers, files=data)
response_data = response.json()
if response.status_code == 200 and response_data['success']:
return response_data['data']['link']
else:
raise Exception(f"Error uploading image to Imgur: {response_data['data']['error']}")
def reverse_image_search(image_url):
params = {
'engine': 'google_reverse_image',
'image_url': image_url,
# "image_content": image_url,
'api_key': serp_api_key
}
response = requests.get(search_endpoint, params=params)
return response.json()
def extract_titles_and_descriptions(search_results, top_n=3):
titles_and_descriptions = []
for result in search_results.get('image_results', [])[:top_n]:
temp_dict = {}
title = result.get('title', '')
description = result.get('snippet', '')
temp_dict['title'] = title
temp_dict['description'] = description
titles_and_descriptions.append(temp_dict)
return titles_and_descriptions
def load_image(inputs: dict) -> dict:
"""Load image from file and encode it as base64."""
image_path = inputs["image_path"]
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
image_base64 = encode_image(image_path)
return {"image": image_base64}
class ImageInformation(BaseModel):
"""Information about an image."""
Title: str = Field(description="Suitable title for the given product in image")
image_description: str = Field(description="a short description of the image")
# main_objects: list[str] = Field(description="list of the main objects on the picture")
# Set verbose
# globals.set_debug(True)
@chain
def image_model(inputs: dict) -> str | list[str] | dict:
"""Invoke model with image and prompt."""
model = ChatOpenAI(temperature=0.5, model="gpt-4-vision-preview", max_tokens=1024)
msg = model.invoke(
[HumanMessage(
content=[
{"type": "text", "text": inputs["prompt"]},
{"type": "text", "text": parser.get_format_instructions()},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{inputs['image']}"}},
])]
)
return msg.content
load_image_chain = TransformChain(
input_variables=["image_path"],
output_variables=["image"],
transform=load_image
)
parser = JsonOutputParser(pydantic_object=ImageInformation)
def get_image_informations(image_path: str) -> dict:
vision_prompt = """
Given the image, the image is a commercial product. I want to get the information for listing this product on online store. provide the following information:
- The extracted text written on the product.
- Title of the product in image based on the extracted text
"""
vision_chain = load_image_chain | image_model | parser
return vision_chain.invoke({'image_path': f'{image_path}',
'prompt': vision_prompt})
def parse_json_response(response):
# Remove the enclosing markers if present
if response.startswith("```json") and response.endswith("```"):
response = response[7:-3].strip()
# Load the response as a JSON object
data = json.loads(response)
# Find the key that contains the list of items
listings_key = None
for key, value in data.items():
if isinstance(value, list) and all(isinstance(item, dict) for item in value):
listings_key = key
break
if not listings_key:
raise ValueError("No valid listings key found in the response")
listings = data[listings_key]
# Create a list to store the parsed dictionaries
parsed_data = []
# Iterate through each item in the listings
for item in listings:
# Extract the title and features
title = item.get("Title", "")
features = item.get("Features", [])
# Create a dictionary for each item
item_dict = {
"Title": title,
"Features": features
}
# Append the dictionary to the list
parsed_data.append(item_dict)
return parsed_data
def main(image_path):
# try:
# Upload image to Imgur and get the URL
image_url = upload_image_to_imgur(image_path)
print(f"Image uploaded to Imgur: {image_url}")
# Perform reverse image search
search_results = reverse_image_search(image_url)
if 'error' in search_results:
print("Error in Serp API:", search_results['error'])
# Extract titles and descriptions
serp_results = extract_titles_and_descriptions(search_results)
print("Serp Result: ",serp_results, "\n\n\n\n")
gpt_vision_result = get_image_informations(image_path)
print("GPT Vision Result: ", gpt_vision_result, "\n\n\n\n")
# Prompt to generate the JSON for the product listing
prompt = f'''
You have results from a SERP API and GPT Vision. The SERP API provides related product information, while GPT Vision gives exact extracted texts and a suitable title for the product image.
Your task is to generate titles and feature lists for an e-commerce listing in JSON format. Prioritize the accurate GPT Vision data, using SERP API data ONLY if it is relevent to GPT Vision result.
#### SERP Results:
{serp_results}
#### GPT Vision Result:
{gpt_vision_result}
Generate a JSON for product listing (at Least THREE) based on the above results.
#### Please provide in the form of a json. Following is the format of the json::
{{
"Listings": [
{{
"Title": "Example Title",
"Features": [
"Feature 1",
"Feature 2",
"Feature 3",
.,
.,
.,
.,
.,
"feature N"
]
}},
{{
"Title": "Example Title",
"Features": [
"Feature 1",
"Feature 2",
"Feature 3",
.,
.,
.,
.,
.,
"feature N"
]
}}
]
}}
'''
gpt_model = OpenAI(api_key=gpt_api_key)
# Call the ChatGPT 3.5 model using the chat completion endpoint
response = gpt_model.chat.completions.create(model="gpt-3.5-turbo",temperature=0,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
])
# Extract the text from the response
generated_text = response.choices[0].message.content
print("Generated Text: ",generated_text)
parsed_data = parse_json_response(generated_text)
# Print the ChatGPT response
return parsed_data
if __name__ == "__main__":
image_path = 'sampleImages/edited3.jpg' # Replace with the path to your local image
main(image_path)
|