import gradio as gr import pandas as pd import lightgbm as lgb import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import os import torch from torchvision import models, transforms from PIL import Image # --------------------------- # Crop Recommendation Setup # --------------------------- url = "https://raw.githubusercontent.com/sehajpreet22/data/refs/heads/main/cleaned_crop_data_with_pbi_labels.csv" data = pd.read_csv(url) X = data.drop('label', axis=1) y = data['label'] le = LabelEncoder() y_encoded = le.fit_transform(y) X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3, random_state=0) model = lgb.LGBMClassifier() model.fit(X_train, y_train) def predict_crop(ਨਾਈਟ੍ਰੋਜਨ, ਫਾਸਫੋਰਸ, ਪੋਟਾਸ਼ੀਅਮ, ਤਾਪਮਾਨ, ਨਮੀ, ਮਿੱਟੀ_pH, ਵਰਖਾ): input_data = np.array([[ਨਾਈਟ੍ਰੋਜਨ, ਫਾਸਫੋਰਸ, ਪੋਟਾਸ਼ੀਅਮ, ਤਾਪਮਾਨ, ਨਮੀ, ਮਿੱਟੀ_pH, ਵਰਖਾ]]) pred = model.predict(input_data)[0] crop_name = le.inverse_transform([pred])[0] image_path = f"crop_images/{crop_name}.jpeg" if not os.path.exists(image_path): image_path = None return image_path, f"🌾ਤੁਹਾਡੇ ਖੇਤ ਲਈ ਸੁਝਾਈ ਗਈ ਫਸਲ: *{crop_name}*" with gr.Blocks() as demo: gr.Markdown("# 🌾 **ਕਿਹੜੀ ਫਸਲ ਲਾਈਏ?**") with gr.Tabs(): with gr.Row(): ਨਾਈਟ੍ਰੋਜਨ= gr.Slider(0, 140, step=1, label="ਨਾਈਟ੍ਰੋਜਨ (kg/ha)") ਫਾਸਫੋਰਸ= gr.Slider(5, 95, step=1, label="ਫਾਸਫੋਰਸ (kg/ha)") ਪੋਟਾਸ਼ੀਅਮ= gr.Slider(5, 82, step=1, label="ਪੋਟਾਸ਼ੀਅਮ (kg/ha)") with gr.Row(): ਤਾਪਮਾਨ= gr.Slider(15.63, 36.32, step=0.1, label="ਤਾਪਮਾਨ (°C)") ਨਮੀ= gr.Slider(14.2,99.98 , step=1, label="ਨਮੀ (%)") with gr.Row(): ਮਿੱਟੀ_pH= gr.Slider(0, 14, step=0.1, label="ਮਿੱਟੀ ਦਾ pH") ਵਰਖਾ= gr.Slider(20.21, 253.72, step=1, label="ਵਰਖਾ (mm)") predict_btn = gr.Button("ਫਸਲ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰੋ") crop_image_output = gr.Image(label="🌿 ਫਸਲ ਦੀ ਤਸਵੀਰ") crop_text_output = gr.Markdown() predict_btn.click(fn=predict_crop, inputs=[ਨਾਈਟ੍ਰੋਜਨ,ਫਾਸਫੋਰਸ,ਪੋਟਾਸ਼ੀਅਮ,ਤਾਪਮਾਨ,ਨਮੀ,ਮਿੱਟੀ_pH,ਵਰਖਾ], outputs=[crop_image_output, crop_text_output]) demo.launch()