import gradio as gr import pandas as pd import lightgbm as lgb import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import os import torch from torchvision import models, transforms from PIL import Image # --------------------------- # Crop Recommendation Setup # --------------------------- url = "https://raw.githubusercontent.com/Pushpinder-Singh06/CSV-Files/refs/heads/main/crop_cleaned%20data.csv " data = pd.read_csv(url) X = data.drop('label', axis=1) y = data['label'] le = LabelEncoder() y_encoded = le.fit_transform(y) X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.3, random_state=0) model = lgb.LGBMClassifier() model.fit(X_train, y_train) def predict_crop(nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall): input_data = np.array([[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall]]) pred = model.predict(input_data)[0] crop_name = le.inverse_transform([pred])[0] image_path = f"crop_images/{crop_name}.jpeg" if not os.path.exists(image_path): image_path = None return image_path, f"🌾 Recommended crop for your field: *{crop_name}*" with gr.Blocks() as demo: gr.Markdown("# 🌾 **Which Crop Should I Grow?**") with gr.Tabs(): with gr.Row(): nitrogen = gr.Slider(0, 140, step=1, label="Nitrogen (kg/ha)") phosphorus = gr.Slider(5, 95, step=1, label="Phosphorus (kg/ha)") potassium = gr.Slider(5, 82, step=1, label="Potassium (kg/ha)") with gr.Row(): temperature = gr.Slider(15.63, 36.32, step=0.1, label="Temperature (°C)") humidity = gr.Slider(14.2, 99.98, step=1, label="Humidity (%)") with gr.Row(): soil_pH = gr.Slider(0, 14, step=0.1, label="Soil pH") rainfall = gr.Slider(20.21, 253.72, step=1, label="Rainfall (mm)") predict_btn = gr.Button("Predict Crop") crop_image_output = gr.Image(label="🌿 Crop Image") crop_text_output = gr.Markdown() predict_btn.click(fn=predict_crop, inputs=[nitrogen, phosphorus, potassium, temperature, humidity, soil_pH, rainfall], outputs=[crop_image_output, crop_text_output]) demo.launch()