|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import cv2 |
|
import numpy as np |
|
import time |
|
import os |
|
from datetime import datetime |
|
from ultralytics import YOLO |
|
from transformers import BlipProcessor, BlipForQuestionAnswering |
|
import torch |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
model = YOLO('yolov8x-world.pt') |
|
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") |
|
vqa_model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base") |
|
|
|
def analyze_fire_scene(frame): |
|
|
|
results = model(frame, text=["fire", "flame", "smoke", "burning", "wildfire"]) |
|
|
|
|
|
fire_detected = False |
|
smoke_detected = False |
|
fire_details = [] |
|
|
|
|
|
for result in results: |
|
boxes = result.boxes |
|
for box in boxes: |
|
confidence = float(box.conf[0]) |
|
if confidence > 0.5: |
|
class_name = result.names[int(box.cls[0])] |
|
if class_name in ['fire', 'flame', 'burning', 'wildfire']: |
|
fire_detected = True |
|
|
|
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy() |
|
|
|
roi = frame[int(y1):int(y2), int(x1):int(x2)] |
|
fire_details.append({ |
|
'type': class_name, |
|
'confidence': confidence, |
|
'location': (x1, y1, x2, y2), |
|
'roi': roi |
|
}) |
|
elif class_name == 'smoke': |
|
smoke_detected = True |
|
|
|
return fire_detected, smoke_detected, fire_details |
|
|
|
def get_fire_analysis(frame, fire_details): |
|
|
|
inputs = processor(frame, return_tensors="pt") |
|
|
|
|
|
questions = [ |
|
"Is there a fire in this image?", |
|
"Is there smoke in this image?", |
|
"Are there any people near the fire?", |
|
"Is the fire spreading?", |
|
"What is the size of the fire?" |
|
] |
|
|
|
analysis = [] |
|
for question in questions: |
|
|
|
inputs["question"] = question |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = vqa_model.generate( |
|
**inputs, |
|
max_length=20, |
|
num_beams=3, |
|
min_length=1, |
|
top_p=0.9, |
|
repetition_penalty=1.5, |
|
length_penalty=1.0, |
|
temperature=1.0, |
|
) |
|
answer = processor.decode(outputs[0], skip_special_tokens=True) |
|
analysis.append(f"Q: {question}\nA: {answer}") |
|
|
|
return analysis |
|
|
|
def check_for_fire(): |
|
|
|
cap = cv2.VideoCapture(0) |
|
if not cap.isOpened(): |
|
return "Error: Could not access webcam" |
|
|
|
|
|
ret, frame = cap.read() |
|
if not ret: |
|
cap.release() |
|
return "Error: Could not read from webcam" |
|
|
|
|
|
fire_detected, smoke_detected, fire_details = analyze_fire_scene(frame) |
|
|
|
|
|
cap.release() |
|
|
|
|
|
location = "Webcam Location" |
|
|
|
if fire_detected: |
|
|
|
analysis = get_fire_analysis(frame, fire_details) |
|
return f"Fire detected at {location}!\n\nAnalysis:\n" + "\n".join(analysis) |
|
elif smoke_detected: |
|
return f"Smoke detected at {location}!" |
|
else: |
|
return "No fire or smoke detected" |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
if "detect fire" in message.lower(): |
|
return check_for_fire() |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
if message.choices[0].delta.content is not None: |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(mcp_server=True) |
|
|