adds better docstrings , readme tags
Browse files
README.md
CHANGED
|
@@ -9,6 +9,8 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: Use Amazon Chronos To Predict Stock Prices
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
# Stock Analysis and Prediction Demo
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: Use Amazon Chronos To Predict Stock Prices
|
| 12 |
+
tags:
|
| 13 |
+
- mcp-server-track
|
| 14 |
---
|
| 15 |
|
| 16 |
# Stock Analysis and Prediction Demo
|
app.py
CHANGED
|
@@ -451,7 +451,6 @@ def create_interface():
|
|
| 451 |
with gr.Row():
|
| 452 |
with gr.Column():
|
| 453 |
|
| 454 |
-
|
| 455 |
gr.Markdown("### Structured Product Metrics")
|
| 456 |
daily_metrics = gr.JSON(label="Product Metrics")
|
| 457 |
|
|
@@ -605,22 +604,94 @@ def create_interface():
|
|
| 605 |
raise gr.Error(error_message)
|
| 606 |
|
| 607 |
# Daily analysis button click
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
daily_predict_btn.click(
|
| 609 |
-
fn=
|
| 610 |
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
|
| 611 |
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
|
| 612 |
)
|
| 613 |
|
| 614 |
# Hourly analysis button click
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
hourly_predict_btn.click(
|
| 616 |
-
fn=
|
| 617 |
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
|
| 618 |
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
|
| 619 |
)
|
| 620 |
|
| 621 |
# 15-minute analysis button click
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
min15_predict_btn.click(
|
| 623 |
-
fn=
|
| 624 |
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
|
| 625 |
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
|
| 626 |
)
|
|
|
|
| 451 |
with gr.Row():
|
| 452 |
with gr.Column():
|
| 453 |
|
|
|
|
| 454 |
gr.Markdown("### Structured Product Metrics")
|
| 455 |
daily_metrics = gr.JSON(label="Product Metrics")
|
| 456 |
|
|
|
|
| 604 |
raise gr.Error(error_message)
|
| 605 |
|
| 606 |
# Daily analysis button click
|
| 607 |
+
def daily_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
|
| 608 |
+
"""
|
| 609 |
+
Process daily timeframe stock analysis and generate predictions.
|
| 610 |
+
|
| 611 |
+
Args:
|
| 612 |
+
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
|
| 613 |
+
pd (int): Number of days to predict (1-365)
|
| 614 |
+
ld (int): Historical lookback period in days (1-3650)
|
| 615 |
+
st (str): Prediction strategy to use ("chronos" or "technical")
|
| 616 |
+
|
| 617 |
+
Returns:
|
| 618 |
+
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
|
| 619 |
+
- Trading signals dictionary
|
| 620 |
+
- Plotly figure with price and technical analysis
|
| 621 |
+
- Product metrics dictionary
|
| 622 |
+
- Risk metrics dictionary
|
| 623 |
+
- Sector metrics dictionary
|
| 624 |
+
|
| 625 |
+
Example:
|
| 626 |
+
>>> daily_analysis("AAPL", 30, 365, "chronos")
|
| 627 |
+
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
|
| 628 |
+
"""
|
| 629 |
+
return analyze_stock(s, "1d", pd, ld, st)
|
| 630 |
+
|
| 631 |
daily_predict_btn.click(
|
| 632 |
+
fn=daily_analysis,
|
| 633 |
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
|
| 634 |
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
|
| 635 |
)
|
| 636 |
|
| 637 |
# Hourly analysis button click
|
| 638 |
+
def hourly_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
|
| 639 |
+
"""
|
| 640 |
+
Process hourly timeframe stock analysis and generate predictions.
|
| 641 |
+
|
| 642 |
+
Args:
|
| 643 |
+
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
|
| 644 |
+
pd (int): Number of days to predict (1-7)
|
| 645 |
+
ld (int): Historical lookback period in days (1-30)
|
| 646 |
+
st (str): Prediction strategy to use ("chronos" or "technical")
|
| 647 |
+
|
| 648 |
+
Returns:
|
| 649 |
+
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
|
| 650 |
+
- Trading signals dictionary
|
| 651 |
+
- Plotly figure with price and technical analysis
|
| 652 |
+
- Product metrics dictionary
|
| 653 |
+
- Risk metrics dictionary
|
| 654 |
+
- Sector metrics dictionary
|
| 655 |
+
|
| 656 |
+
Example:
|
| 657 |
+
>>> hourly_analysis("AAPL", 3, 14, "chronos")
|
| 658 |
+
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
|
| 659 |
+
"""
|
| 660 |
+
return analyze_stock(s, "1h", pd, ld, st)
|
| 661 |
+
|
| 662 |
hourly_predict_btn.click(
|
| 663 |
+
fn=hourly_analysis,
|
| 664 |
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
|
| 665 |
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
|
| 666 |
)
|
| 667 |
|
| 668 |
# 15-minute analysis button click
|
| 669 |
+
def min15_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
|
| 670 |
+
"""
|
| 671 |
+
Process 15-minute timeframe stock analysis and generate predictions.
|
| 672 |
+
|
| 673 |
+
Args:
|
| 674 |
+
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
|
| 675 |
+
pd (int): Number of days to predict (1-2)
|
| 676 |
+
ld (int): Historical lookback period in days (1-5)
|
| 677 |
+
st (str): Prediction strategy to use ("chronos" or "technical")
|
| 678 |
+
|
| 679 |
+
Returns:
|
| 680 |
+
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
|
| 681 |
+
- Trading signals dictionary
|
| 682 |
+
- Plotly figure with price and technical analysis
|
| 683 |
+
- Product metrics dictionary
|
| 684 |
+
- Risk metrics dictionary
|
| 685 |
+
- Sector metrics dictionary
|
| 686 |
+
|
| 687 |
+
Example:
|
| 688 |
+
>>> min15_analysis("AAPL", 1, 3, "chronos")
|
| 689 |
+
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
|
| 690 |
+
"""
|
| 691 |
+
return analyze_stock(s, "15m", pd, ld, st)
|
| 692 |
+
|
| 693 |
min15_predict_btn.click(
|
| 694 |
+
fn=min15_analysis,
|
| 695 |
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
|
| 696 |
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
|
| 697 |
)
|