initial stock predictions testing
Browse files- README.md +62 -0
- app.py +213 -0
- requirements.txt +119 -0
README.md
CHANGED
|
@@ -12,3 +12,65 @@ short_description: Use Amazon Chronos To Predict Stock Prices
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Stock Price Prediction with Amazon Chronos
|
| 18 |
+
|
| 19 |
+
A neural network application that uses Amazon's Chronos model for time series forecasting to predict stock prices.
|
| 20 |
+
|
| 21 |
+
## Features
|
| 22 |
+
|
| 23 |
+
- Real-time stock price predictions using Amazon Chronos
|
| 24 |
+
- Interactive visualization of predictions with confidence intervals
|
| 25 |
+
- Support for multiple timeframes (daily, hourly, 15-minute)
|
| 26 |
+
- User-friendly Gradio interface
|
| 27 |
+
- Free stock data using yfinance API
|
| 28 |
+
|
| 29 |
+
## Hugging Face Spaces Deployment
|
| 30 |
+
|
| 31 |
+
This application is configured to run on Hugging Face Spaces. To deploy:
|
| 32 |
+
|
| 33 |
+
1. Create a new Space on Hugging Face
|
| 34 |
+
2. Choose "Docker" as the SDK
|
| 35 |
+
3. Upload all the files to your Space
|
| 36 |
+
|
| 37 |
+
## Local Development
|
| 38 |
+
|
| 39 |
+
To run locally:
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
# Create and activate virtual environment
|
| 43 |
+
python -m venv .venv
|
| 44 |
+
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
| 45 |
+
|
| 46 |
+
# Install dependencies
|
| 47 |
+
pip install -r requirements.txt
|
| 48 |
+
|
| 49 |
+
# Run the application
|
| 50 |
+
python app.py
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
## Model Details
|
| 54 |
+
|
| 55 |
+
The application uses Amazon's Chronos model for time series forecasting. The model is configured to:
|
| 56 |
+
|
| 57 |
+
- Make predictions for stock prices
|
| 58 |
+
- Calculate confidence intervals
|
| 59 |
+
- Generate interactive visualizations
|
| 60 |
+
- Support multiple prediction horizons
|
| 61 |
+
|
| 62 |
+
## Usage
|
| 63 |
+
|
| 64 |
+
1. Enter a stock symbol (e.g., AAPL, GOOGL, MSFT)
|
| 65 |
+
2. Select the desired timeframe (1d, 1h, 15m)
|
| 66 |
+
3. Choose the number of days to predict (1-30)
|
| 67 |
+
4. Click "Make Prediction" to generate forecasts
|
| 68 |
+
|
| 69 |
+
The application will display:
|
| 70 |
+
- A plot showing historical prices and predictions
|
| 71 |
+
- Confidence intervals for the predictions
|
| 72 |
+
- A separate plot showing prediction uncertainty
|
| 73 |
+
|
| 74 |
+
## License
|
| 75 |
+
|
| 76 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
app.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
+
import yfinance as yf
|
| 6 |
+
import torch
|
| 7 |
+
from chronos import BaseChronosPipeline
|
| 8 |
+
import plotly.graph_objects as go
|
| 9 |
+
from plotly.subplots import make_subplots
|
| 10 |
+
|
| 11 |
+
# Initialize Chronos pipeline
|
| 12 |
+
pipeline = None
|
| 13 |
+
|
| 14 |
+
def load_pipeline():
|
| 15 |
+
"""Load the Chronos model with CPU configuration"""
|
| 16 |
+
global pipeline
|
| 17 |
+
if pipeline is None:
|
| 18 |
+
pipeline = BaseChronosPipeline.from_pretrained(
|
| 19 |
+
"amazon/chronos-bolt-base",
|
| 20 |
+
device_map="cpu", # Force CPU usage
|
| 21 |
+
torch_dtype=torch.float32 # Use float32 for CPU
|
| 22 |
+
)
|
| 23 |
+
pipeline.model = pipeline.model.eval()
|
| 24 |
+
return pipeline
|
| 25 |
+
|
| 26 |
+
def get_historical_data(symbol: str, timeframe: str = "1d") -> np.ndarray:
|
| 27 |
+
"""
|
| 28 |
+
Fetch historical data using yfinance.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
symbol (str): The stock symbol (e.g., 'AAPL')
|
| 32 |
+
timeframe (str): The timeframe for data ('1d', '1h', '15m')
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
np.ndarray: Array of historical prices for Chronos model
|
| 36 |
+
"""
|
| 37 |
+
try:
|
| 38 |
+
# Map timeframe to yfinance interval
|
| 39 |
+
tf_map = {
|
| 40 |
+
"1d": "1d",
|
| 41 |
+
"1h": "1h",
|
| 42 |
+
"15m": "15m"
|
| 43 |
+
}
|
| 44 |
+
interval = tf_map.get(timeframe, "1d")
|
| 45 |
+
|
| 46 |
+
# Calculate date range
|
| 47 |
+
end_date = datetime.now()
|
| 48 |
+
if timeframe == "1d":
|
| 49 |
+
start_date = end_date - timedelta(days=365) # 1 year of daily data
|
| 50 |
+
elif timeframe == "1h":
|
| 51 |
+
start_date = end_date - timedelta(days=30) # 30 days of hourly data
|
| 52 |
+
else: # 15m
|
| 53 |
+
start_date = end_date - timedelta(days=7) # 7 days of 15-min data
|
| 54 |
+
|
| 55 |
+
# Fetch data using yfinance
|
| 56 |
+
ticker = yf.Ticker(symbol)
|
| 57 |
+
df = ticker.history(start=start_date, end=end_date, interval=interval)
|
| 58 |
+
|
| 59 |
+
# Calculate returns
|
| 60 |
+
df['returns'] = df['Close'].pct_change()
|
| 61 |
+
|
| 62 |
+
# Drop NaN values
|
| 63 |
+
df = df.dropna()
|
| 64 |
+
|
| 65 |
+
# Normalize the data
|
| 66 |
+
returns = df['returns'].values
|
| 67 |
+
normalized_returns = (returns - returns.mean()) / returns.std()
|
| 68 |
+
|
| 69 |
+
# Convert to the format expected by Chronos
|
| 70 |
+
return normalized_returns.reshape(-1, 1)
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
|
| 74 |
+
|
| 75 |
+
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5):
|
| 76 |
+
"""
|
| 77 |
+
Make prediction using Chronos model.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
symbol (str): Stock symbol
|
| 81 |
+
timeframe (str): Data timeframe
|
| 82 |
+
prediction_days (int): Number of days to predict
|
| 83 |
+
|
| 84 |
+
Returns:
|
| 85 |
+
dict: Prediction results and visualization
|
| 86 |
+
"""
|
| 87 |
+
try:
|
| 88 |
+
# Load pipeline
|
| 89 |
+
pipe = load_pipeline()
|
| 90 |
+
|
| 91 |
+
# Get historical data
|
| 92 |
+
historical_data = get_historical_data(symbol, timeframe)
|
| 93 |
+
|
| 94 |
+
# Convert to tensor
|
| 95 |
+
context = torch.tensor(historical_data, dtype=torch.float32)
|
| 96 |
+
|
| 97 |
+
# Make prediction
|
| 98 |
+
with torch.inference_mode():
|
| 99 |
+
prediction = pipe.predict(
|
| 100 |
+
context=context,
|
| 101 |
+
prediction_length=prediction_days,
|
| 102 |
+
num_samples=100
|
| 103 |
+
).detach().cpu().numpy()
|
| 104 |
+
|
| 105 |
+
# Get actual historical prices for plotting
|
| 106 |
+
ticker = yf.Ticker(symbol)
|
| 107 |
+
hist_data = ticker.history(period="1mo")
|
| 108 |
+
|
| 109 |
+
# Create prediction dates
|
| 110 |
+
last_date = hist_data.index[-1]
|
| 111 |
+
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
|
| 112 |
+
|
| 113 |
+
# Calculate prediction statistics
|
| 114 |
+
mean_pred = prediction.mean(axis=0)
|
| 115 |
+
std_pred = prediction.std(axis=0)
|
| 116 |
+
|
| 117 |
+
# Create visualization
|
| 118 |
+
fig = make_subplots(rows=2, cols=1, shared_xaxes=True,
|
| 119 |
+
vertical_spacing=0.03, subplot_titles=('Price Prediction', 'Confidence Interval'))
|
| 120 |
+
|
| 121 |
+
# Add historical data
|
| 122 |
+
fig.add_trace(
|
| 123 |
+
go.Scatter(x=hist_data.index, y=hist_data['Close'], name='Historical Price',
|
| 124 |
+
line=dict(color='blue')),
|
| 125 |
+
row=1, col=1
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Add prediction mean
|
| 129 |
+
fig.add_trace(
|
| 130 |
+
go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
|
| 131 |
+
line=dict(color='red')),
|
| 132 |
+
row=1, col=1
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Add confidence intervals
|
| 136 |
+
fig.add_trace(
|
| 137 |
+
go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
|
| 138 |
+
fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
|
| 139 |
+
name='Upper Bound'),
|
| 140 |
+
row=1, col=1
|
| 141 |
+
)
|
| 142 |
+
fig.add_trace(
|
| 143 |
+
go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
|
| 144 |
+
fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
|
| 145 |
+
name='Lower Bound'),
|
| 146 |
+
row=1, col=1
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Add confidence interval plot
|
| 150 |
+
fig.add_trace(
|
| 151 |
+
go.Scatter(x=pred_dates, y=std_pred, name='Prediction Uncertainty',
|
| 152 |
+
line=dict(color='green')),
|
| 153 |
+
row=2, col=1
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Update layout
|
| 157 |
+
fig.update_layout(
|
| 158 |
+
title=f'{symbol} Price Prediction',
|
| 159 |
+
xaxis_title='Date',
|
| 160 |
+
yaxis_title='Price',
|
| 161 |
+
height=800,
|
| 162 |
+
showlegend=True
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
return {
|
| 166 |
+
"symbol": symbol,
|
| 167 |
+
"prediction": mean_pred.tolist(),
|
| 168 |
+
"confidence": std_pred.tolist(),
|
| 169 |
+
"dates": pred_dates.strftime('%Y-%m-%d').tolist(),
|
| 170 |
+
"plot": fig
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
except Exception as e:
|
| 174 |
+
raise Exception(f"Prediction error: {str(e)}")
|
| 175 |
+
|
| 176 |
+
# Create Gradio interface
|
| 177 |
+
def create_interface():
|
| 178 |
+
with gr.Blocks(title="Stock Price Prediction with Amazon Chronos") as demo:
|
| 179 |
+
gr.Markdown("# Stock Price Prediction with Amazon Chronos")
|
| 180 |
+
gr.Markdown("Enter a stock symbol and select prediction parameters to get price forecasts.")
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Column():
|
| 184 |
+
symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
|
| 185 |
+
timeframe = gr.Dropdown(
|
| 186 |
+
choices=["1d", "1h", "15m"],
|
| 187 |
+
label="Timeframe",
|
| 188 |
+
value="1d"
|
| 189 |
+
)
|
| 190 |
+
prediction_days = gr.Slider(
|
| 191 |
+
minimum=1,
|
| 192 |
+
maximum=30,
|
| 193 |
+
value=5,
|
| 194 |
+
step=1,
|
| 195 |
+
label="Days to Predict"
|
| 196 |
+
)
|
| 197 |
+
predict_btn = gr.Button("Make Prediction")
|
| 198 |
+
|
| 199 |
+
with gr.Column():
|
| 200 |
+
plot = gr.Plot(label="Prediction Visualization")
|
| 201 |
+
results = gr.JSON(label="Prediction Results")
|
| 202 |
+
|
| 203 |
+
predict_btn.click(
|
| 204 |
+
fn=make_prediction,
|
| 205 |
+
inputs=[symbol, timeframe, prediction_days],
|
| 206 |
+
outputs=[results, plot]
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
return demo
|
| 210 |
+
|
| 211 |
+
if __name__ == "__main__":
|
| 212 |
+
demo = create_interface()
|
| 213 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# first pip install numpy scipy scikit-learn all seperately
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
pandas_datareader
|
| 5 |
+
# numpy
|
| 6 |
+
#--find-links https://download.pytorch.org/whl/torch_stable.html
|
| 7 |
+
#torch==1.11.0+cu113
|
| 8 |
+
# torch==1.13.0 breaks due to _posthooks
|
| 9 |
+
torch>=2.1.2
|
| 10 |
+
#torchvision==0.10.0+cu111
|
| 11 |
+
|
| 12 |
+
pandas>=2.0.0
|
| 13 |
+
# scipy
|
| 14 |
+
loguru>=0.7.0
|
| 15 |
+
matplotlib
|
| 16 |
+
neuralforecast
|
| 17 |
+
retry>=0.9.2
|
| 18 |
+
hyperopt
|
| 19 |
+
#neuralprophet
|
| 20 |
+
alpaca-trade-api>=3.0.0
|
| 21 |
+
|
| 22 |
+
SQLAlchemy
|
| 23 |
+
websocket-client
|
| 24 |
+
py
|
| 25 |
+
future
|
| 26 |
+
Pillow
|
| 27 |
+
ipython
|
| 28 |
+
pbr
|
| 29 |
+
setuptools
|
| 30 |
+
six
|
| 31 |
+
wheel
|
| 32 |
+
pip
|
| 33 |
+
tqdm
|
| 34 |
+
optuna
|
| 35 |
+
# scikit-learn
|
| 36 |
+
filelock
|
| 37 |
+
transformers>=4.36.0
|
| 38 |
+
click
|
| 39 |
+
requests>=2.31.0
|
| 40 |
+
joblib
|
| 41 |
+
aiohttp
|
| 42 |
+
tensorboard
|
| 43 |
+
msgpack
|
| 44 |
+
urllib3
|
| 45 |
+
rsa
|
| 46 |
+
pyasn1
|
| 47 |
+
attrs
|
| 48 |
+
wcwidth
|
| 49 |
+
cmd2
|
| 50 |
+
pyperclip
|
| 51 |
+
fsspec
|
| 52 |
+
packaging
|
| 53 |
+
parso
|
| 54 |
+
jedi
|
| 55 |
+
lxml
|
| 56 |
+
Mako
|
| 57 |
+
MarkupSafe
|
| 58 |
+
pytz>=2023.3
|
| 59 |
+
toml
|
| 60 |
+
idna
|
| 61 |
+
multidict
|
| 62 |
+
cliff
|
| 63 |
+
stevedore
|
| 64 |
+
autopage
|
| 65 |
+
prettytable
|
| 66 |
+
certifi
|
| 67 |
+
patsy
|
| 68 |
+
regex
|
| 69 |
+
cachetools>=5.3.0
|
| 70 |
+
python-dateutil
|
| 71 |
+
cmaes
|
| 72 |
+
alembic
|
| 73 |
+
colorlog
|
| 74 |
+
traitlets
|
| 75 |
+
decorator
|
| 76 |
+
backcall
|
| 77 |
+
pickleshare
|
| 78 |
+
pluggy
|
| 79 |
+
iniconfig
|
| 80 |
+
yarl
|
| 81 |
+
chardet
|
| 82 |
+
threadpoolctl
|
| 83 |
+
greenlet
|
| 84 |
+
Markdown
|
| 85 |
+
oauthlib
|
| 86 |
+
Werkzeug
|
| 87 |
+
fonttools
|
| 88 |
+
pyparsing
|
| 89 |
+
websockets
|
| 90 |
+
statsmodels
|
| 91 |
+
# cycler
|
| 92 |
+
# kiwisolver
|
| 93 |
+
# sacremoses
|
| 94 |
+
tokenizers #==0.15.2 --only-binary=:all:
|
| 95 |
+
# torchmetrics
|
| 96 |
+
# zipp
|
| 97 |
+
# typer
|
| 98 |
+
#pytorch-forecasting
|
| 99 |
+
# pytorch-forecasting
|
| 100 |
+
#pytorch-lightning
|
| 101 |
+
alpaca-py>=0.8.0
|
| 102 |
+
fastapi
|
| 103 |
+
gunicorn
|
| 104 |
+
uvicorn
|
| 105 |
+
# git+https://github.com/amazon-science/chronos-forecasting.git
|
| 106 |
+
chronos-forecasting
|
| 107 |
+
scikit-learn
|
| 108 |
+
|
| 109 |
+
python-binance
|
| 110 |
+
typer
|
| 111 |
+
diskcache
|
| 112 |
+
anthropic
|
| 113 |
+
gradio>=4.0.0
|
| 114 |
+
spaces>=0.1.0
|
| 115 |
+
numpy>=1.24.0
|
| 116 |
+
torch>=2.0.0
|
| 117 |
+
yfinance>=0.2.0
|
| 118 |
+
plotly>=5.0.0
|
| 119 |
+
chronos>=0.1.0
|