File size: 10,917 Bytes
56e185e
 
 
 
 
 
ab1e76c
56e185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1e76c
56e185e
 
ab1e76c
56e185e
 
 
 
ab1e76c
56e185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1e76c
56e185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98f00cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56e185e
 
 
 
 
98f00cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56e185e
 
 
 
 
98f00cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56e185e
 
 
 
 
98f00cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56e185e
 
 
 
 
98f00cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56e185e
 
 
 
 
 
 
98f00cc
 
 
 
 
 
56e185e
98f00cc
 
 
 
 
56e185e
 
 
98f00cc
 
 
 
 
 
 
 
56e185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab1e76c
 
56e185e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import uuid
import json
import asyncio
from dotenv import load_dotenv

import gradio as gr
from mcp.server.fastmcp import FastMCP, Context

# ---------------------------------------------------------------------------
# Environment & MCP initialisation
# ---------------------------------------------------------------------------
load_dotenv()

mcp = FastMCP(
    name="healthcare-mcp",
    version="1.0.0",
    description="Healthcare MCP server for medical information access (Gradio edition)"
)

# ---------------------------------------------------------------------------
# Internal tools & services
# ---------------------------------------------------------------------------
from src.tools.fda_tool import FDATool
from src.tools.pubmed_tool import PubMedTool
from src.tools.healthfinder_tool import HealthFinderTool
from src.tools.clinical_trials_tool import ClinicalTrialsTool
from src.tools.medical_terminology_tool import MedicalTerminologyTool
from src.services.usage_service import UsageService

fda_tool = FDATool()
pubmed_tool = PubMedTool()
healthfinder_tool = HealthFinderTool()
clinical_trials_tool = ClinicalTrialsTool()
medical_terminology_tool = MedicalTerminologyTool()

usage_service = UsageService(db_path="healthcare_usage.db")

# Unique session – ensures all usage is grouped for the current interface user
session_id = str(uuid.uuid4())

# ---------------------------------------------------------------------------
# FastMCP tool definitions – these can be reached programmatically by MCP
# clients (and are also reused by the Gradio UI wrappers below).
# ---------------------------------------------------------------------------

@mcp.tool()
async def fda_drug_lookup(ctx: Context, drug_name: str, search_type: str = "general"):
    """Look up drug information from the FDA database."""
    usage_service.record_usage(session_id, "fda_drug_lookup")
    return await fda_tool.lookup_drug(drug_name, search_type)


@mcp.tool()
async def pubmed_search(ctx: Context, query: str, max_results: int = 5, date_range: str = ""):
    """Search for medical literature in the PubMed database."""
    usage_service.record_usage(session_id, "pubmed_search")
    return await pubmed_tool.search_literature(query, max_results, date_range)


@mcp.tool()
async def health_topics(ctx: Context, topic: str, language: str = "en"):
    """Retrieve evidence‑based information for a specific health topic."""
    usage_service.record_usage(session_id, "health_topics")
    return await healthfinder_tool.get_health_topics(topic, language)


@mcp.tool()
async def clinical_trials_search(
    ctx: Context,
    condition: str,
    status: str = "recruiting",
    max_results: int = 10,
):
    """Search for clinical trials by condition and status."""
    usage_service.record_usage(session_id, "clinical_trials_search")
    return await clinical_trials_tool.search_trials(condition, status, max_results)


@mcp.tool()
async def lookup_icd_code(
    ctx: Context,
    code: str | None = None,
    description: str | None = None,
    max_results: int = 10,
):
    """Look up ICD‑10 codes by code or text description."""
    usage_service.record_usage(session_id, "lookup_icd_code")
    return await medical_terminology_tool.lookup_icd_code(code, description, max_results)


@mcp.tool()
async def get_usage_stats(ctx: Context):
    """Return per‑session usage statistics."""
    return usage_service.get_monthly_usage(session_id)


@mcp.tool()
async def get_all_usage_stats(ctx: Context):
    """Return aggregate usage statistics across all sessions."""
    return usage_service.get_usage_stats()


# ---------------------------------------------------------------------------
# Helper – convert coroutine results to nicely‑formatted JSON for UI display
# ---------------------------------------------------------------------------

def pretty_json(data):
    try:
        return json.dumps(data, indent=2, ensure_ascii=False)
    except TypeError:
        # Fallback if the object isn’t serialisable
        return str(data)


# ---------------------------------------------------------------------------
# Gradio UI definitions
# ---------------------------------------------------------------------------

async def fda_drug_lookup_gr(drug_name: str, search_type: str):
    """Gradio wrapper for :pyfunc:`fda_drug_lookup`.

    Parameters
    ----------
    drug_name : str
        Drug identifier to pass through to :pyfunc:`FDATool.lookup_drug`.
    search_type : str
        See :pydata:`search_type` in :pyfunc:`fda_drug_lookup`.

    Returns
    -------
    str
        JSON‑formatted response suitable for a ``gr.Textbox``.
    """
    usage_service.record_usage(session_id, "fda_drug_lookup")
    res = await fda_tool.lookup_drug(drug_name, search_type)
    return pretty_json(res)


async def pubmed_search_gr(query: str, max_results: int, date_range: str):
    """Gradio wrapper for PubMed literature search.

    Parameters
    ----------
    query : str
        PubMed query string.
    max_results : int
        Maximum number of articles requested from the backend tool.
    date_range : str
        If non‑empty, restricts search to the last *N* years.

    Returns
    -------
    str
        Pretty‑printed JSON with article details.
    """
    usage_service.record_usage(session_id, "pubmed_search")
    res = await pubmed_tool.search_literature(query, int(max_results), str(date_range or ""))
    return pretty_json(res)


async def health_topics_gr(topic: str, language: str):
    """Gradio wrapper for HealthFinder topic retrieval.

    Parameters
    ----------
    topic : str
        Health topic slug or phrase.
    language : str
        Output language (``"en"`` / ``"es"``).

    Returns
    -------
    str
        JSON‑formatted HealthFinder result.
    """
    usage_service.record_usage(session_id, "health_topics")
    res = await healthfinder_tool.get_health_topics(topic, language)
    return pretty_json(res)


async def clinical_trials_search_gr(condition: str, status: str, max_results: int):
    """Gradio wrapper for :pyfunc:`clinical_trials_search`.

    Parameters
    ----------
    condition : str
        Condition keyword, e.g. "melanoma".
    status : str
        Recruitment status filter.
    max_results : int
        Cap on trial records returned.

    Returns
    -------
    str
        Pretty‑printed JSON list of trials.
    """
    usage_service.record_usage(session_id, "clinical_trials_search")
    res = await clinical_trials_tool.search_trials(condition, status, int(max_results))
    return pretty_json(res)


async def lookup_icd_code_gr(code: str, description: str, max_results: int):
    """Gradio wrapper for ICD‑10 code search.

    The user may supply *either* an ICD‑10 code fragment *or* a free‑text
    description. Empty strings are converted to ``None`` so the underlying tool
    can decide which parameter to use.

    Parameters
    ----------
    code : str
        ICD‑10 code or prefix (optional).
    description : str
        Natural‑language description (optional).
    max_results : int
        Maximum number of matches.

    Returns
    -------
    str
        JSON‑formatted list of matching codes.
    """
    usage_service.record_usage(session_id, "lookup_icd_code")
    code = code or None
    description = description or None
    res = await medical_terminology_tool.lookup_icd_code(code, description, int(max_results))
    return pretty_json(res)


# ---------------------------------------------------------------------------
# Usage‑statistics helpers (synchronous; no external I/O)
# ---------------------------------------------------------------------------

def get_usage_stats_gr() -> str:
    """Return **session‑specific** usage statistics as pretty JSON.

    Returns
    -------
    str
        JSON rendition of the current session’s monthly usage counts.
    """
    return pretty_json(usage_service.get_monthly_usage(session_id))


def get_all_usage_stats_gr() -> str:
    """Return **global** usage statistics across *all* sessions.

    Returns
    -------
    str
        JSON rendition of cumulative endpoint invocations.
    """
    return pretty_json(usage_service.get_usage_stats())


# ---------------------------------------------------------------------------
# Build the Gradio Blocks interface
# ---------------------------------------------------------------------------

with gr.Blocks(title="Healthcare MCP Explorer") as demo:
    gr.Markdown("""# 🩺 Healthcare MCP Dashboard\nInteractively query FDA, PubMed, HealthFinder, Clinical‑Trials, and ICD‑10 data — all from one screen.""")

    # ---------------- Drug lookup ----------------
    with gr.Group():
        gr.Markdown("## 💊 FDA Drug Lookup")
        with gr.Row():
            drug_name_tb = gr.Textbox(label="Drug name", placeholder="e.g. atorvastatin")
            search_type_dd = gr.Dropdown(
                label="Search type",
                choices=["general", "label", "adverse_events"],
                value="general",
            )
            fda_button = gr.Button("Search")
        fda_output = gr.Textbox(label="Result", lines=12)

    # ---------------- PubMed search -------------
    with gr.Group():
        gr.Markdown("## 🔍 PubMed Literature Search")
        query_tb = gr.Textbox(label="Query", placeholder="e.g. type 2 diabetes glycemic control")
        with gr.Row():
            max_results_slider = gr.Slider(1, 20, value=5, step=1, label="Max articles")
            date_range_tb = gr.Textbox(label="Published within last N years (optional)")
            pubmed_button = gr.Button("Search PubMed")
        pubmed_output = gr.Textbox(label="Result", lines=12)

    # ---------------- Health topics -------------
    with gr.Group():
        gr.Markdown("## 📚 HealthFinder Topics")
        topic_tb = gr.Textbox(label="Health topic", placeholder="e.g. hypertension")
        language_dd = gr.Dropdown(label="Language", choices=["en", "es"], value="en")
        hf_button = gr.Button("Get Topic Info")
        hf_output = gr.Textbox(label="Result", lines=12)


    # -------------------------------------------------------------------
    # Wire‑up callbacks
    # -------------------------------------------------------------------
    fda_button.click(fda_drug_lookup_gr, inputs=[drug_name_tb, search_type_dd], outputs=fda_output)
    pubmed_button.click(pubmed_search_gr, inputs=[query_tb, max_results_slider, date_range_tb], outputs=pubmed_output)
    hf_button.click(health_topics_gr, inputs=[topic_tb, language_dd], outputs=hf_output)

# ---------------------------------------------------------------------------
# Entrypoint – run Gradio and MCP in one process
# ---------------------------------------------------------------------------

if __name__ == "__main__":
    demo.launch(mcp_server=True, show_error=True)