Spaces:
Sleeping
Sleeping
Commit
Β·
0733fd6
1
Parent(s):
7209b84
registered agents are showing but groq is not working fine
Browse files- app.py +575 -546
- database_module/__init__.py +2 -2
- database_module/db.py +13 -4
- database_module/mcp_tools.py +48 -21
- database_module/models.py +6 -5
- drift_detector.sqlite3 +0 -0
- fastagent.config.yaml +14 -10
- ourllm.py +67 -47
- server.py +178 -94
- test_llm.py +33 -0
app.py
CHANGED
@@ -2,118 +2,142 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import asyncio
|
4 |
from typing import Optional, List, Dict
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
import json
|
21 |
from datetime import datetime
|
22 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
# Fast Agent client initialization - This is the "scapegoat" client whose drift we're detecting
|
29 |
-
fast = FastAgent("Scapegoat Client")
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
-
async def setup_agent():
|
37 |
-
# This function defines the scapegoat agent that will be monitored for drift
|
38 |
-
pass
|
39 |
|
40 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
scapegoat_client = None
|
|
|
|
|
42 |
|
43 |
-
# Initialize the scapegoat client that will be tested for drift
|
44 |
-
async def initialize_scapegoat_client():
|
45 |
-
global scapegoat_client
|
46 |
-
print("Initializing scapegoat client for drift monitoring...")
|
47 |
-
async with fast.run() as agent:
|
48 |
-
scapegoat_client = agent
|
49 |
-
return agent
|
50 |
-
|
51 |
-
# Helper to run async functions with FastAgent
|
52 |
-
def run_async(coro):
|
53 |
-
try:
|
54 |
-
loop = asyncio.get_running_loop()
|
55 |
-
except RuntimeError:
|
56 |
-
loop = asyncio.new_event_loop()
|
57 |
-
asyncio.set_event_loop(loop)
|
58 |
-
return loop.run_until_complete(coro)
|
59 |
-
else:
|
60 |
-
# return result if coroutine returns value, else schedule
|
61 |
-
task = loop.create_task(coro)
|
62 |
-
return loop.run_until_complete(task) if not task.done() else task
|
63 |
-
|
64 |
-
def run_initial_diagnostics(model_name: str, capabilities: str):
|
65 |
-
"""Run initial diagnostics for a new model"""
|
66 |
-
try:
|
67 |
-
# Use FastAgent's send method with a formatted message to call the tool
|
68 |
-
message = f"""Please call the run_initial_diagnostics tool with the following parameters:
|
69 |
-
model: {model_name}
|
70 |
-
model_capabilities: {capabilities}
|
71 |
-
|
72 |
-
This tool will generate and store baseline diagnostics for the model.
|
73 |
-
"""
|
74 |
-
|
75 |
-
result = run_async(scapegoat_client(message))
|
76 |
-
return result
|
77 |
-
except Exception as e:
|
78 |
-
print(f"Error running diagnostics: {e}")
|
79 |
-
return None
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
83 |
try:
|
84 |
-
#
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
result = run_async(scapegoat_client(message))
|
92 |
-
return result
|
93 |
except Exception as e:
|
94 |
-
print(f"
|
95 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
# Initialize MCP connection on startup
|
98 |
-
def initialize_mcp_connection():
|
99 |
try:
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
except Exception as e:
|
104 |
-
print(f"
|
105 |
return False
|
106 |
|
107 |
|
108 |
-
#
|
109 |
def get_models_from_db():
|
110 |
-
"""Get all models from database
|
|
|
|
|
|
|
111 |
try:
|
112 |
-
# Direct function call to database_module instead of using MCP
|
113 |
result = get_all_models_handler({})
|
114 |
-
|
115 |
if result:
|
116 |
-
# Format the result to match the expected structure
|
117 |
return [
|
118 |
{
|
119 |
"name": model["name"],
|
@@ -124,22 +148,77 @@ def get_models_from_db():
|
|
124 |
]
|
125 |
return []
|
126 |
except Exception as e:
|
127 |
-
print(f"Error getting models: {e}")
|
128 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
|
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
def search_models_in_db(search_term: str):
|
136 |
-
"""Search models in database
|
|
|
|
|
|
|
137 |
try:
|
138 |
-
# Direct function call to database_module instead of using MCP
|
139 |
result = search_models_handler({"search_term": search_term})
|
140 |
-
|
141 |
if result:
|
142 |
-
# Format the result to match the expected structure
|
143 |
return [
|
144 |
{
|
145 |
"name": model["name"],
|
@@ -148,546 +227,496 @@ def search_models_in_db(search_term: str):
|
|
148 |
}
|
149 |
for model in result
|
150 |
]
|
151 |
-
# If no results, return empty list
|
152 |
return []
|
153 |
except Exception as e:
|
154 |
-
print(f"Error searching models: {e}")
|
155 |
-
# Fallback to filtering from all models if there's an error
|
156 |
return [m for m in get_models_from_db() if search_term.lower() in m["name"].lower()]
|
157 |
|
|
|
158 |
def format_dropdown_items(models):
|
159 |
-
"""Format dropdown items
|
|
|
|
|
|
|
160 |
formatted_items = []
|
161 |
model_mapping = {}
|
162 |
-
|
163 |
for model in models:
|
164 |
desc_preview = model["description"][:40] + ("..." if len(model["description"]) > 40 else "")
|
165 |
item_label = f"{model['name']} (Created: {model['created']}) - {desc_preview}"
|
166 |
formatted_items.append(item_label)
|
167 |
model_mapping[item_label] = model["name"]
|
168 |
-
|
169 |
return formatted_items, model_mapping
|
170 |
|
|
|
171 |
def extract_model_name_from_dropdown(dropdown_value, model_mapping):
|
172 |
-
"""Extract
|
|
|
|
|
173 |
return model_mapping.get(dropdown_value, dropdown_value.split(" (")[0] if dropdown_value else "")
|
174 |
|
|
|
175 |
def get_model_details(model_name: str):
|
176 |
-
"""Get model details from database
|
177 |
try:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
188 |
except Exception as e:
|
189 |
-
print(f"Error getting model details: {e}")
|
190 |
-
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": ""}
|
191 |
-
|
192 |
-
def enhance_prompt_via_mcp(prompt: str):
|
193 |
-
"""Enhance prompt locally since enhance_prompt tool is not available in server.py"""
|
194 |
-
# Provide a basic prompt enhancement functionality since server doesn't have it
|
195 |
-
enhanced_prompts = {
|
196 |
-
"helpful": f"{prompt}\n\nPlease be thorough, helpful, and provide detailed responses.",
|
197 |
-
"concise": f"{prompt}\n\nPlease provide concise, direct answers.",
|
198 |
-
"technical": f"{prompt}\n\nPlease provide technically accurate and comprehensive responses.",
|
199 |
-
}
|
200 |
|
201 |
-
if "helpful" in prompt.lower():
|
202 |
-
return enhanced_prompts["helpful"]
|
203 |
-
elif "concise" in prompt.lower() or "brief" in prompt.lower():
|
204 |
-
return enhanced_prompts["concise"]
|
205 |
-
elif "technical" in prompt.lower() or "detailed" in prompt.lower():
|
206 |
-
return enhanced_prompts["technical"]
|
207 |
-
else:
|
208 |
-
return f"{prompt}\n\nAdditional context: Be specific, helpful, and provide detailed responses while maintaining a professional tone."
|
209 |
-
|
210 |
-
def save_model_to_db(model_name: str, system_prompt: str):
|
211 |
-
"""Save model to database directly since save_model tool is not available in server.py"""
|
212 |
-
try:
|
213 |
-
# Check if model already exists
|
214 |
-
with SessionLocal() as session:
|
215 |
-
existing = session.query(ModelEntry).filter_by(name=model_name).first()
|
216 |
-
if existing:
|
217 |
-
# Update capabilities to include the new system prompt
|
218 |
-
capabilities = existing.capabilities
|
219 |
-
if "\nSystem Prompt: " in capabilities:
|
220 |
-
# Replace the system prompt part
|
221 |
-
parts = capabilities.split("\nSystem Prompt: ")
|
222 |
-
capabilities = f"{parts[0]}\nSystem Prompt: {system_prompt}"
|
223 |
-
else:
|
224 |
-
# Add system prompt if not present
|
225 |
-
capabilities = f"{capabilities}\nSystem Prompt: {system_prompt}"
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
else:
|
232 |
-
# Should not happen as models are registered with capabilities before calling this function
|
233 |
-
return {"message": f"Model {model_name} not found. Please register it first."}
|
234 |
-
except Exception as e:
|
235 |
-
print(f"Error saving model: {e}")
|
236 |
-
return {"message": f"Error saving model: {e}"}
|
237 |
|
238 |
-
def get_drift_history_from_db(model_name: str):
|
239 |
-
"""Get drift history from database directly without any fallbacks"""
|
240 |
try:
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
-
with SessionLocal() as session:
|
244 |
-
# Query the drift_history table for this model
|
245 |
-
drift_entries = session.query(DriftEntry).filter(
|
246 |
-
DriftEntry.model_name == model_name
|
247 |
-
).order_by(DriftEntry.date.desc()).all()
|
248 |
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
history.append({
|
257 |
-
"date": entry.date.strftime("%Y-%m-%d"),
|
258 |
-
"drift_score": float(entry.drift_score),
|
259 |
-
"model": entry.model_name
|
260 |
-
})
|
261 |
-
|
262 |
-
return history
|
263 |
except Exception as e:
|
264 |
-
print(f"Error
|
265 |
-
return
|
266 |
-
def create_drift_chart(drift_history):
|
267 |
-
"""Create drift chart using plotly"""
|
268 |
-
if not drift_history:
|
269 |
-
return gr.update(value=None)
|
270 |
-
|
271 |
-
dates = [entry["date"] for entry in drift_history]
|
272 |
-
scores = [entry["drift_score"] for entry in drift_history]
|
273 |
-
|
274 |
-
fig = go.Figure()
|
275 |
-
fig.add_trace(go.Scatter(
|
276 |
-
x=dates,
|
277 |
-
y=scores,
|
278 |
-
mode='lines+markers',
|
279 |
-
name='Drift Score',
|
280 |
-
line=dict(color='#ff6b6b', width=3),
|
281 |
-
marker=dict(size=8, color='#ff6b6b')
|
282 |
-
))
|
283 |
-
|
284 |
-
fig.update_layout(
|
285 |
-
title='Model Drift Over Time',
|
286 |
-
xaxis_title='Date',
|
287 |
-
yaxis_title='Drift Score',
|
288 |
-
template='plotly_white',
|
289 |
-
height=400,
|
290 |
-
showlegend=True
|
291 |
-
)
|
292 |
-
|
293 |
-
return fig
|
294 |
|
295 |
-
# Global variable to store model mapping
|
296 |
-
current_model_mapping = {}
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
global current_model_mapping
|
302 |
-
|
303 |
-
if search_term.strip():
|
304 |
-
models = search_models_in_db(search_term.strip())
|
305 |
-
else:
|
306 |
-
models = get_models_from_db()
|
307 |
-
|
308 |
-
formatted_items, model_mapping = format_dropdown_items(models)
|
309 |
-
current_model_mapping = model_mapping
|
310 |
-
|
311 |
-
return gr.update(choices=formatted_items, value=formatted_items[0] if formatted_items else None)
|
312 |
|
313 |
-
def on_model_select(dropdown_value):
|
314 |
-
"""Handle model selection"""
|
315 |
-
if not dropdown_value:
|
316 |
-
return "", ""
|
317 |
-
|
318 |
-
actual_model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
|
319 |
-
return actual_model_name, actual_model_name
|
320 |
|
321 |
def cancel_create_new():
|
322 |
"""Cancel create new model"""
|
323 |
return [
|
324 |
gr.update(visible=False), # create_new_section
|
325 |
-
|
326 |
"", # new_system_prompt
|
327 |
gr.update(visible=False), # enhanced_prompt_display
|
328 |
gr.update(visible=False), # prompt_choice
|
329 |
gr.update(visible=False), # save_model_button
|
330 |
-
gr.update(visible=False)
|
331 |
]
|
332 |
|
|
|
333 |
def enhance_prompt(original_prompt):
|
334 |
-
"""Enhance prompt
|
335 |
-
if not original_prompt.strip():
|
336 |
return [
|
337 |
gr.update(visible=False),
|
338 |
gr.update(visible=False),
|
339 |
gr.update(visible=False)
|
340 |
]
|
341 |
-
|
342 |
-
enhanced =
|
343 |
return [
|
344 |
gr.update(value=enhanced, visible=True),
|
345 |
gr.update(visible=True),
|
346 |
gr.update(visible=True)
|
347 |
]
|
348 |
|
349 |
-
def register_model_with_capabilities(model_name: str, capabilities: str):
|
350 |
-
"""Register a new model with its capabilities in the database"""
|
351 |
-
try:
|
352 |
-
with SessionLocal() as session:
|
353 |
-
model_entry = ModelEntry(
|
354 |
-
name=model_name,
|
355 |
-
capabilities=capabilities,
|
356 |
-
created=datetime.now()
|
357 |
-
)
|
358 |
-
session.add(model_entry)
|
359 |
-
session.commit()
|
360 |
-
return True
|
361 |
-
except Exception as e:
|
362 |
-
print(f"Error registering model: {e}")
|
363 |
-
return False
|
364 |
|
|
|
|
|
|
|
365 |
|
366 |
-
|
367 |
-
"""Save new model to database"""
|
368 |
-
if not selected_model_name or not original_prompt.strip() or not selected_llm:
|
369 |
return [
|
370 |
-
"Please provide model name, LLM selection, and system prompt",
|
371 |
gr.update(visible=True),
|
372 |
gr.update()
|
373 |
]
|
374 |
-
|
375 |
-
final_prompt = enhanced_prompt if choice == "Keep Enhanced" else original_prompt
|
376 |
-
|
377 |
try:
|
378 |
-
|
379 |
capabilities = f"{selected_llm}\nSystem Prompt: {final_prompt}"
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
status =
|
|
|
|
|
392 |
except Exception as e:
|
393 |
-
status = f"Error saving model: {e}"
|
394 |
-
|
395 |
-
|
396 |
-
updated_models = get_models_from_db()
|
397 |
-
formatted_items, model_mapping = format_dropdown_items(updated_models)
|
398 |
-
global current_model_mapping
|
399 |
-
current_model_mapping = model_mapping
|
400 |
-
|
401 |
return [
|
402 |
status,
|
403 |
gr.update(visible=True),
|
404 |
-
|
405 |
]
|
406 |
|
|
|
407 |
def chatbot_response(message, history, dropdown_value):
|
408 |
-
"""Generate chatbot response
|
409 |
-
if not message.strip() or not dropdown_value:
|
410 |
return history, ""
|
411 |
-
|
412 |
-
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
|
413 |
-
model_details = get_model_details(model_name)
|
414 |
-
system_prompt = model_details.get("system_prompt", "")
|
415 |
-
|
416 |
try:
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
llm_name,
|
429 |
-
model_provider='groq' if llm_name.startswith('groq') else 'google'
|
430 |
-
)
|
431 |
-
|
432 |
-
# Format the conversation with system prompt
|
433 |
-
formatted_prompt = f"System: {system_prompt}\nUser: {message}"
|
434 |
-
|
435 |
-
# Get response from LLM
|
436 |
-
response = llm.invoke(formatted_prompt)
|
437 |
-
response_text = response.content
|
438 |
-
|
439 |
-
history.append([message, response_text])
|
440 |
return history, ""
|
441 |
-
|
442 |
except Exception as e:
|
443 |
-
|
444 |
-
history.append([message, error_message])
|
445 |
return history, ""
|
446 |
|
|
|
447 |
def calculate_drift(dropdown_value):
|
448 |
-
"""Calculate drift for
|
449 |
if not dropdown_value:
|
450 |
-
return "Please select a model first"
|
451 |
-
|
452 |
-
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
|
453 |
-
|
454 |
-
# First try the drift calculation tool
|
455 |
try:
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
459 |
except Exception as e:
|
460 |
-
print(f"Error calculating drift: {e}")
|
461 |
-
return
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
def refresh_drift_history(dropdown_value):
|
468 |
-
"""Refresh drift history
|
469 |
if not dropdown_value:
|
470 |
return [], gr.update(value=None)
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
|
478 |
def initialize_interface():
|
479 |
-
"""Initialize interface
|
480 |
-
# Connect to MCP server
|
481 |
-
mcp_connected = initialize_mcp_connection()
|
482 |
-
|
483 |
-
# Get initial model data
|
484 |
-
models = get_models_from_db()
|
485 |
-
formatted_items, model_mapping = format_dropdown_items(models)
|
486 |
global current_model_mapping
|
487 |
-
current_model_mapping = model_mapping
|
488 |
-
|
489 |
-
return (
|
490 |
-
formatted_items, # model_dropdown choices
|
491 |
-
formatted_items[0] if formatted_items else None, # model_dropdown value
|
492 |
-
"", # new_model_name - should be empty string, not choices
|
493 |
-
formatted_items[0].split(" (")[0] if formatted_items else "", # selected_model_display
|
494 |
-
formatted_items[0].split(" (")[0] if formatted_items else "" # drift_model_display
|
495 |
-
)
|
496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
with gr.
|
503 |
-
#
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
# Create New Model Section (Initially Hidden)
|
521 |
-
with gr.Group(visible=False) as create_new_section:
|
522 |
-
gr.Markdown("#### Create New Model")
|
523 |
-
new_model_name = gr.Textbox(
|
524 |
-
label="Model name",
|
525 |
-
placeholder="Model name"
|
526 |
-
)
|
527 |
-
new_llm = gr.Dropdown(
|
528 |
-
choices=[
|
529 |
-
"gemini-1.0-pro",
|
530 |
-
"gemini-1.5-pro",
|
531 |
-
"groq-llama-3.1-8b-instant",
|
532 |
-
"groq-mixtral-8x7b",
|
533 |
-
"groq-gpt4"
|
534 |
-
], #work here to show options to select llms(available to use) like gemini-1.5-pro, etc google models, groq models (atleast 5 in total)
|
535 |
-
label="Select LLM Name",
|
536 |
-
interactive=True
|
537 |
-
)
|
538 |
-
new_system_prompt = gr.Textbox(
|
539 |
-
label="System Prompt",
|
540 |
-
placeholder="Enter system prompt",
|
541 |
-
lines=3
|
542 |
-
)
|
543 |
-
|
544 |
-
with gr.Row():
|
545 |
-
enhance_button = gr.Button("Enhance Prompt", variant="primary")
|
546 |
-
cancel_button = gr.Button("Cancel", variant="secondary")
|
547 |
-
|
548 |
-
enhanced_prompt_display = gr.Textbox(
|
549 |
-
label="Enhanced Prompt",
|
550 |
-
interactive=False,
|
551 |
-
lines=4,
|
552 |
-
visible=False
|
553 |
)
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
label="
|
558 |
-
visible=False
|
559 |
)
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
# Chatbot Tab
|
570 |
-
with gr.TabItem("Chatbot"):
|
571 |
-
selected_model_display = gr.Textbox(
|
572 |
-
label="Currently Selected Model",
|
573 |
-
interactive=False
|
574 |
)
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
clear_chat = gr.Button("Clear Chat", variant="secondary")
|
587 |
-
|
588 |
-
# Drift Analysis Tab
|
589 |
-
with gr.TabItem("Drift Analysis"):
|
590 |
-
drift_model_display = gr.Textbox(
|
591 |
-
label="Model for Drift Analysis",
|
592 |
-
interactive=False
|
593 |
)
|
594 |
-
|
|
|
|
|
|
|
|
|
|
|
595 |
with gr.Row():
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
)
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
outputs=[
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
|
692 |
if __name__ == "__main__":
|
693 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import asyncio
|
4 |
from typing import Optional, List, Dict
|
5 |
+
import subprocess
|
6 |
+
import time
|
7 |
+
import signal
|
8 |
+
import sys
|
9 |
+
import threading
|
10 |
+
import concurrent.futures
|
11 |
+
# Add these imports at the top of your Gradio file
|
12 |
+
from ourllm import llm # Import the actual LLM instance
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
# Add error handling for imports
|
15 |
+
try:
|
16 |
+
from database_module.db import SessionLocal
|
17 |
+
from database_module.models import ModelEntry
|
18 |
+
from langchain.chat_models import init_chat_model
|
19 |
+
from database_module import (
|
20 |
+
init_db,
|
21 |
+
get_all_models_handler,
|
22 |
+
search_models_handler,
|
23 |
+
)
|
24 |
+
|
25 |
+
DATABASE_AVAILABLE = True
|
26 |
+
except ImportError as e:
|
27 |
+
print(f"β οΈ Database modules not available: {e}")
|
28 |
+
print("β οΈ Running in demo mode without database functionality")
|
29 |
+
DATABASE_AVAILABLE = False
|
30 |
+
|
31 |
import json
|
32 |
from datetime import datetime
|
33 |
import plotly.graph_objects as go
|
34 |
+
try:
|
35 |
+
from ourllm import llm
|
36 |
+
print("β
Successfully imported LLM from ourllm.py")
|
37 |
+
LLM_AVAILABLE = True
|
38 |
+
except ImportError as e:
|
39 |
+
print(f"β Failed to import LLM: {e}")
|
40 |
+
LLM_AVAILABLE = False
|
41 |
+
|
42 |
+
# Mock database functions for when database is not available
|
43 |
+
def mock_init_db():
|
44 |
+
print("π Mock database initialized")
|
45 |
+
return True
|
46 |
+
|
47 |
+
|
48 |
+
def mock_get_all_models():
|
49 |
+
return [
|
50 |
+
{"name": "demo-model-1", "description": "Demo model for testing", "created": "2024-01-01"},
|
51 |
+
{"name": "demo-model-2", "description": "Another demo model", "created": "2024-01-02"}
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
def mock_search_models(search_term):
|
56 |
+
all_models = mock_get_all_models()
|
57 |
+
return [m for m in all_models if search_term.lower() in m["name"].lower()]
|
58 |
+
|
59 |
|
60 |
+
def mock_register_model(model_name, capabilities):
|
61 |
+
print(f"π Mock: Registered model {model_name}")
|
62 |
+
return True
|
63 |
|
|
|
|
|
64 |
|
65 |
+
# Use mock functions if database is not available
|
66 |
+
if not DATABASE_AVAILABLE:
|
67 |
+
init_db = mock_init_db
|
68 |
+
get_all_models_handler = lambda x: mock_get_all_models()
|
69 |
+
search_models_handler = lambda x: mock_search_models(x.get("search_term", ""))
|
|
|
|
|
|
|
70 |
|
71 |
+
# Initialize database (or mock)
|
72 |
+
try:
|
73 |
+
init_db()
|
74 |
+
print("β
Database initialization successful")
|
75 |
+
except Exception as e:
|
76 |
+
print(f"β οΈ Database initialization failed: {e}")
|
77 |
+
DATABASE_AVAILABLE = False
|
78 |
+
|
79 |
+
# Global variables
|
80 |
scapegoat_client = None
|
81 |
+
server_manager = None
|
82 |
+
current_model_mapping = {}
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# --- Simplified Database Functions ---
|
86 |
+
def ensure_database_setup():
|
87 |
+
"""Ensure database is properly set up"""
|
88 |
+
if not DATABASE_AVAILABLE:
|
89 |
+
print("β
Running in demo mode - no database required")
|
90 |
+
return True
|
91 |
+
|
92 |
try:
|
93 |
+
# Test database connection
|
94 |
+
with SessionLocal() as session:
|
95 |
+
session.execute("SELECT 1")
|
96 |
+
session.commit()
|
97 |
+
print("β
Database connection successful")
|
98 |
+
return True
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
+
print(f"β Database setup failed: {e}")
|
101 |
+
return False
|
102 |
+
|
103 |
+
|
104 |
+
def register_model_with_capabilities(model_name: str, capabilities: str):
|
105 |
+
"""Register a new model with its capabilities"""
|
106 |
+
if not DATABASE_AVAILABLE:
|
107 |
+
return mock_register_model(model_name, capabilities)
|
108 |
|
|
|
|
|
109 |
try:
|
110 |
+
with SessionLocal() as session:
|
111 |
+
existing = session.query(ModelEntry).filter_by(name=model_name).first()
|
112 |
+
if existing:
|
113 |
+
existing.capabilities = capabilities
|
114 |
+
existing.updated = datetime.now()
|
115 |
+
session.commit()
|
116 |
+
print(f"β
Updated existing model: {model_name}")
|
117 |
+
else:
|
118 |
+
model_entry = ModelEntry(
|
119 |
+
name=model_name,
|
120 |
+
capabilities=capabilities,
|
121 |
+
created=datetime.now()
|
122 |
+
)
|
123 |
+
session.add(model_entry)
|
124 |
+
session.commit()
|
125 |
+
print(f"β
Registered new model: {model_name}")
|
126 |
+
return True
|
127 |
except Exception as e:
|
128 |
+
print(f"β Error registering model: {e}")
|
129 |
return False
|
130 |
|
131 |
|
132 |
+
# --- Simplified Model Management Functions ---
|
133 |
def get_models_from_db():
|
134 |
+
"""Get all models from database"""
|
135 |
+
if not DATABASE_AVAILABLE:
|
136 |
+
return mock_get_all_models()
|
137 |
+
|
138 |
try:
|
|
|
139 |
result = get_all_models_handler({})
|
|
|
140 |
if result:
|
|
|
141 |
return [
|
142 |
{
|
143 |
"name": model["name"],
|
|
|
148 |
]
|
149 |
return []
|
150 |
except Exception as e:
|
151 |
+
print(f"β Error getting models: {e}")
|
152 |
+
return mock_get_all_models()
|
153 |
+
|
154 |
+
|
155 |
+
load_dotenv()
|
156 |
+
|
157 |
+
|
158 |
+
# Replace your current chatbot_response function with this:
|
159 |
+
def chatbot_response(message, history, dropdown_value):
|
160 |
+
"""Generate chatbot response using actual LLM with debug info"""
|
161 |
+
print(f"π DEBUG: Function called with message: '{message}'")
|
162 |
+
print(f"π DEBUG: LLM_AVAILABLE: {LLM_AVAILABLE}")
|
163 |
+
print(f"π DEBUG: GROQ_API_KEY exists: {'GROQ_API_KEY' in os.environ}")
|
164 |
+
|
165 |
+
if not message or not message.strip() or not dropdown_value:
|
166 |
+
print("π DEBUG: Empty message or dropdown")
|
167 |
+
return history, ""
|
168 |
+
|
169 |
+
try:
|
170 |
+
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
|
171 |
+
print(f"π DEBUG: Model name: {model_name}")
|
172 |
+
|
173 |
+
# Initialize history if needed
|
174 |
+
if history is None:
|
175 |
+
history = []
|
176 |
+
|
177 |
+
# Check if LLM is available and API key is set
|
178 |
+
if not LLM_AVAILABLE:
|
179 |
+
response_text = "β LLM not available - check ourllm.py import"
|
180 |
+
elif not os.getenv("GROQ_API_KEY"):
|
181 |
+
response_text = "β GROQ_API_KEY not found in environment variables"
|
182 |
+
else:
|
183 |
+
try:
|
184 |
+
print("π DEBUG: Attempting to call LLM...")
|
185 |
+
|
186 |
+
# Simple direct call to LLM
|
187 |
+
response = llm.invoke(message)
|
188 |
+
response_text = str(response.content).strip()
|
189 |
+
|
190 |
+
print(f"π DEBUG: LLM response received: {response_text[:100]}...")
|
191 |
|
192 |
+
if not response_text:
|
193 |
+
response_text = "β LLM returned empty response"
|
194 |
|
195 |
+
except Exception as e:
|
196 |
+
print(f"π DEBUG: LLM call failed: {e}")
|
197 |
+
response_text = f"β LLM Error: {str(e)}"
|
198 |
|
199 |
+
# Add to history
|
200 |
+
history.append({"role": "user", "content": message})
|
201 |
+
history.append({"role": "assistant", "content": response_text})
|
202 |
+
|
203 |
+
print(f"π DEBUG: Final response: {response_text}")
|
204 |
+
return history, ""
|
205 |
+
|
206 |
+
except Exception as e:
|
207 |
+
print(f"π DEBUG: General error in chatbot_response: {e}")
|
208 |
+
if history is None:
|
209 |
+
history = []
|
210 |
+
history.append({"role": "user", "content": message})
|
211 |
+
history.append({"role": "assistant", "content": f"β Error: {str(e)}"})
|
212 |
+
return history, ""
|
213 |
|
214 |
def search_models_in_db(search_term: str):
|
215 |
+
"""Search models in database"""
|
216 |
+
if not DATABASE_AVAILABLE:
|
217 |
+
return mock_search_models(search_term)
|
218 |
+
|
219 |
try:
|
|
|
220 |
result = search_models_handler({"search_term": search_term})
|
|
|
221 |
if result:
|
|
|
222 |
return [
|
223 |
{
|
224 |
"name": model["name"],
|
|
|
227 |
}
|
228 |
for model in result
|
229 |
]
|
|
|
230 |
return []
|
231 |
except Exception as e:
|
232 |
+
print(f"β Error searching models: {e}")
|
|
|
233 |
return [m for m in get_models_from_db() if search_term.lower() in m["name"].lower()]
|
234 |
|
235 |
+
|
236 |
def format_dropdown_items(models):
|
237 |
+
"""Format dropdown items"""
|
238 |
+
if not models:
|
239 |
+
return [], {}
|
240 |
+
|
241 |
formatted_items = []
|
242 |
model_mapping = {}
|
243 |
+
|
244 |
for model in models:
|
245 |
desc_preview = model["description"][:40] + ("..." if len(model["description"]) > 40 else "")
|
246 |
item_label = f"{model['name']} (Created: {model['created']}) - {desc_preview}"
|
247 |
formatted_items.append(item_label)
|
248 |
model_mapping[item_label] = model["name"]
|
249 |
+
|
250 |
return formatted_items, model_mapping
|
251 |
|
252 |
+
|
253 |
def extract_model_name_from_dropdown(dropdown_value, model_mapping):
|
254 |
+
"""Extract model name from dropdown"""
|
255 |
+
if not dropdown_value:
|
256 |
+
return ""
|
257 |
return model_mapping.get(dropdown_value, dropdown_value.split(" (")[0] if dropdown_value else "")
|
258 |
|
259 |
+
|
260 |
def get_model_details(model_name: str):
|
261 |
+
"""Get model details from database"""
|
262 |
try:
|
263 |
+
if DATABASE_AVAILABLE:
|
264 |
+
with SessionLocal() as session:
|
265 |
+
model_entry = session.query(ModelEntry).filter_by(name=model_name).first()
|
266 |
+
if model_entry:
|
267 |
+
return {
|
268 |
+
"name": model_entry.name,
|
269 |
+
"description": model_entry.description or "",
|
270 |
+
"system_prompt": model_entry.capabilities.split("System Prompt: ")[
|
271 |
+
1] if model_entry.capabilities and "System Prompt: " in model_entry.capabilities else "You are a helpful AI assistant.",
|
272 |
+
"created": model_entry.created.strftime("%Y-%m-%d %H:%M:%S") if model_entry.created else ""
|
273 |
+
}
|
274 |
+
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": "Demo model"}
|
275 |
except Exception as e:
|
276 |
+
print(f"β Error getting model details: {e}")
|
277 |
+
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": "Demo model"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
+
# --- Gradio Interface Functions ---
|
281 |
+
def update_model_dropdown(search_term):
|
282 |
+
"""Update dropdown based on search"""
|
283 |
+
global current_model_mapping
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
|
|
|
|
285 |
try:
|
286 |
+
if search_term and search_term.strip():
|
287 |
+
models = search_models_in_db(search_term.strip())
|
288 |
+
else:
|
289 |
+
models = get_models_from_db()
|
290 |
+
|
291 |
+
formatted_items, model_mapping = format_dropdown_items(models)
|
292 |
+
current_model_mapping = model_mapping
|
293 |
+
|
294 |
+
# Return dropdown with proper value handling
|
295 |
+
if formatted_items:
|
296 |
+
return gr.update(choices=formatted_items, value=formatted_items[0])
|
297 |
+
else:
|
298 |
+
return gr.update(choices=[], value=None)
|
299 |
+
except Exception as e:
|
300 |
+
print(f"β Error updating dropdown: {e}")
|
301 |
+
return gr.update(choices=[], value=None)
|
302 |
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
+
def on_model_select(dropdown_value):
|
305 |
+
"""Handle model selection"""
|
306 |
+
if not dropdown_value or not current_model_mapping:
|
307 |
+
return "", ""
|
308 |
|
309 |
+
try:
|
310 |
+
actual_model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
|
311 |
+
return actual_model_name, actual_model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
except Exception as e:
|
313 |
+
print(f"β Error in model selection: {e}")
|
314 |
+
return "", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
|
|
|
|
316 |
|
317 |
+
def show_create_new():
|
318 |
+
"""Show create new model section"""
|
319 |
+
return gr.update(visible=True), gr.update(value="")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
def cancel_create_new():
|
323 |
"""Cancel create new model"""
|
324 |
return [
|
325 |
gr.update(visible=False), # create_new_section
|
326 |
+
"", # new_model_name
|
327 |
"", # new_system_prompt
|
328 |
gr.update(visible=False), # enhanced_prompt_display
|
329 |
gr.update(visible=False), # prompt_choice
|
330 |
gr.update(visible=False), # save_model_button
|
331 |
+
gr.update(visible=False) # save_status
|
332 |
]
|
333 |
|
334 |
+
|
335 |
def enhance_prompt(original_prompt):
|
336 |
+
"""Enhance prompt locally"""
|
337 |
+
if not original_prompt or not original_prompt.strip():
|
338 |
return [
|
339 |
gr.update(visible=False),
|
340 |
gr.update(visible=False),
|
341 |
gr.update(visible=False)
|
342 |
]
|
343 |
+
|
344 |
+
enhanced = f"{original_prompt}\n\nAdditional context: Be specific, helpful, and provide detailed responses while maintaining a professional tone."
|
345 |
return [
|
346 |
gr.update(value=enhanced, visible=True),
|
347 |
gr.update(visible=True),
|
348 |
gr.update(visible=True)
|
349 |
]
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
def save_new_model(model_name, selected_llm, original_prompt, enhanced_prompt, choice):
|
353 |
+
"""Save new model"""
|
354 |
+
global current_model_mapping
|
355 |
|
356 |
+
if not model_name or not original_prompt or not original_prompt.strip() or not selected_llm:
|
|
|
|
|
357 |
return [
|
358 |
+
"β Please provide model name, LLM selection, and system prompt",
|
359 |
gr.update(visible=True),
|
360 |
gr.update()
|
361 |
]
|
362 |
+
|
|
|
|
|
363 |
try:
|
364 |
+
final_prompt = enhanced_prompt if choice == "Keep Enhanced" else original_prompt
|
365 |
capabilities = f"{selected_llm}\nSystem Prompt: {final_prompt}"
|
366 |
+
|
367 |
+
if register_model_with_capabilities(model_name, capabilities):
|
368 |
+
status = f"β
Model '{model_name}' saved successfully!"
|
369 |
+
|
370 |
+
# Update dropdown with new models
|
371 |
+
updated_models = get_models_from_db()
|
372 |
+
formatted_items, model_mapping = format_dropdown_items(updated_models)
|
373 |
+
current_model_mapping = model_mapping
|
374 |
+
|
375 |
+
dropdown_update = gr.update(choices=formatted_items, value=formatted_items[0] if formatted_items else None)
|
376 |
+
else:
|
377 |
+
status = "β Error saving model to database"
|
378 |
+
dropdown_update = gr.update()
|
379 |
+
|
380 |
except Exception as e:
|
381 |
+
status = f"β Error saving model: {e}"
|
382 |
+
dropdown_update = gr.update()
|
383 |
+
|
|
|
|
|
|
|
|
|
|
|
384 |
return [
|
385 |
status,
|
386 |
gr.update(visible=True),
|
387 |
+
dropdown_update
|
388 |
]
|
389 |
|
390 |
+
|
391 |
def chatbot_response(message, history, dropdown_value):
|
392 |
+
"""Generate chatbot response - simplified version"""
|
393 |
+
if not message or not message.strip() or not dropdown_value:
|
394 |
return history, ""
|
395 |
+
|
|
|
|
|
|
|
|
|
396 |
try:
|
397 |
+
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
|
398 |
+
|
399 |
+
# Simple mock response for demo
|
400 |
+
response_text = f"Hello! I'm {model_name}. You said: '{message}'. This is a demo response since the full LLM integration requires API keys."
|
401 |
+
|
402 |
+
# Append in messages format
|
403 |
+
if history is None:
|
404 |
+
history = []
|
405 |
+
|
406 |
+
history.append({"role": "user", "content": message})
|
407 |
+
history.append({"role": "assistant", "content": response_text})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
return history, ""
|
|
|
409 |
except Exception as e:
|
410 |
+
print(f"β Error in chatbot response: {e}")
|
|
|
411 |
return history, ""
|
412 |
|
413 |
+
|
414 |
def calculate_drift(dropdown_value):
|
415 |
+
"""Calculate drift for model - simplified version"""
|
416 |
if not dropdown_value:
|
417 |
+
return "β Please select a model first"
|
418 |
+
|
|
|
|
|
|
|
419 |
try:
|
420 |
+
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
|
421 |
+
|
422 |
+
# Simple mock drift calculation
|
423 |
+
import random
|
424 |
+
drift_score = random.randint(10, 80)
|
425 |
+
alert = "π¨ Significant drift detected!" if drift_score > 50 else "β
Drift within acceptable range"
|
426 |
+
|
427 |
+
return f"Drift analysis for {model_name}:\nDrift Score: {drift_score}/100\n{alert}"
|
428 |
except Exception as e:
|
429 |
+
print(f"β Error calculating drift: {e}")
|
430 |
+
return "β Error calculating drift"
|
431 |
+
|
432 |
+
|
433 |
+
def create_drift_chart(drift_history):
|
434 |
+
"""Create drift chart"""
|
435 |
+
try:
|
436 |
+
if not drift_history:
|
437 |
+
# Create sample data for demo
|
438 |
+
dates = ['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04', '2024-01-05']
|
439 |
+
scores = [25, 30, 45, 35, 40]
|
440 |
+
else:
|
441 |
+
dates = [entry["date"] for entry in drift_history]
|
442 |
+
scores = [entry["drift_score"] for entry in drift_history]
|
443 |
+
|
444 |
+
fig = go.Figure()
|
445 |
+
fig.add_trace(go.Scatter(
|
446 |
+
x=dates,
|
447 |
+
y=scores,
|
448 |
+
mode='lines+markers',
|
449 |
+
name='Drift Score',
|
450 |
+
line=dict(color='#ff6b6b', width=3),
|
451 |
+
marker=dict(size=8, color='#ff6b6b')
|
452 |
+
))
|
453 |
+
|
454 |
+
fig.update_layout(
|
455 |
+
title='Model Drift Over Time',
|
456 |
+
xaxis_title='Date',
|
457 |
+
yaxis_title='Drift Score',
|
458 |
+
template='plotly_white',
|
459 |
+
height=400,
|
460 |
+
showlegend=True
|
461 |
+
)
|
462 |
+
|
463 |
+
return fig
|
464 |
+
except Exception as e:
|
465 |
+
print(f"β Error creating drift chart: {e}")
|
466 |
+
return go.Figure()
|
467 |
+
|
468 |
|
469 |
def refresh_drift_history(dropdown_value):
|
470 |
+
"""Refresh drift history"""
|
471 |
if not dropdown_value:
|
472 |
return [], gr.update(value=None)
|
473 |
+
|
474 |
+
try:
|
475 |
+
# Mock data for demo
|
476 |
+
history = [
|
477 |
+
{"date": "2024-01-01", "drift_score": 25},
|
478 |
+
{"date": "2024-01-02", "drift_score": 30},
|
479 |
+
{"date": "2024-01-03", "drift_score": 45},
|
480 |
+
{"date": "2024-01-04", "drift_score": 35},
|
481 |
+
{"date": "2024-01-05", "drift_score": 40}
|
482 |
+
]
|
483 |
+
|
484 |
+
chart = create_drift_chart(history)
|
485 |
+
return history, chart
|
486 |
+
except Exception as e:
|
487 |
+
print(f"β Error refreshing drift history: {e}")
|
488 |
+
return [], gr.update(value=None)
|
489 |
+
|
490 |
|
491 |
def initialize_interface():
|
492 |
+
"""Initialize interface"""
|
|
|
|
|
|
|
|
|
|
|
|
|
493 |
global current_model_mapping
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
|
495 |
+
try:
|
496 |
+
models = get_models_from_db()
|
497 |
+
formatted_items, model_mapping = format_dropdown_items(models)
|
498 |
+
current_model_mapping = model_mapping
|
499 |
+
|
500 |
+
# Safe initialization
|
501 |
+
if formatted_items:
|
502 |
+
dropdown_value = formatted_items[0]
|
503 |
+
first_model_name = extract_model_name_from_dropdown(dropdown_value, model_mapping)
|
504 |
+
dropdown_update = gr.update(choices=formatted_items, value=dropdown_value)
|
505 |
+
else:
|
506 |
+
dropdown_value = None
|
507 |
+
first_model_name = ""
|
508 |
+
dropdown_update = gr.update(choices=[], value=None)
|
509 |
+
|
510 |
+
return (
|
511 |
+
dropdown_update, # dropdown update
|
512 |
+
"", # new_model_name
|
513 |
+
first_model_name, # selected_model_display
|
514 |
+
first_model_name # drift_model_display
|
515 |
+
)
|
516 |
+
except Exception as e:
|
517 |
+
print(f"β Error initializing interface: {e}")
|
518 |
+
return (
|
519 |
+
gr.update(choices=[], value=None),
|
520 |
+
"",
|
521 |
+
"",
|
522 |
+
""
|
523 |
+
)
|
524 |
|
525 |
+
|
526 |
+
# --- Gradio Interface ---
|
527 |
+
def create_interface():
|
528 |
+
"""Create the Gradio interface"""
|
529 |
+
with gr.Blocks(title="AI Model Management & Interaction Platform", theme=gr.themes.Soft()) as demo:
|
530 |
+
gr.Markdown("# π€ AI Model Management & Interaction Platform")
|
531 |
+
|
532 |
+
if not DATABASE_AVAILABLE:
|
533 |
+
gr.Markdown("β οΈ **Demo Mode**: Running without database connectivity. Some features are simulated.")
|
534 |
+
|
535 |
+
with gr.Row():
|
536 |
+
# Left Column - Model Selection
|
537 |
+
with gr.Column(scale=1):
|
538 |
+
gr.Markdown("### π Model Selection")
|
539 |
+
|
540 |
+
model_dropdown = gr.Dropdown(
|
541 |
+
choices=[],
|
542 |
+
label="Select Model",
|
543 |
+
interactive=True,
|
544 |
+
allow_custom_value=False,
|
545 |
+
value=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
)
|
547 |
+
|
548 |
+
search_box = gr.Textbox(
|
549 |
+
placeholder="Search by model name or description...",
|
550 |
+
label="π Search Models"
|
|
|
551 |
)
|
552 |
+
|
553 |
+
create_new_button = gr.Button("β Create New Model", variant="secondary")
|
554 |
+
|
555 |
+
# Create New Model Section
|
556 |
+
with gr.Group(visible=False) as create_new_section:
|
557 |
+
gr.Markdown("#### π Create New Model")
|
558 |
+
new_model_name = gr.Textbox(
|
559 |
+
label="Model Name",
|
560 |
+
placeholder="Enter model name"
|
|
|
|
|
|
|
|
|
|
|
561 |
)
|
562 |
+
new_llm = gr.Dropdown(
|
563 |
+
choices=[
|
564 |
+
"gemini-1.0-pro",
|
565 |
+
"gemini-1.5-pro",
|
566 |
+
"groq-llama-3.1-8b-instant",
|
567 |
+
"groq-mixtral-8x7b-32768",
|
568 |
+
"claude-3-sonnet-20240229"
|
569 |
+
],
|
570 |
+
label="Select LLM",
|
571 |
+
interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
)
|
573 |
+
new_system_prompt = gr.Textbox(
|
574 |
+
label="System Prompt",
|
575 |
+
placeholder="Enter system prompt",
|
576 |
+
lines=3
|
577 |
+
)
|
578 |
+
|
579 |
with gr.Row():
|
580 |
+
enhance_button = gr.Button("β¨ Enhance Prompt", variant="primary")
|
581 |
+
cancel_button = gr.Button("β Cancel", variant="secondary")
|
582 |
+
|
583 |
+
enhanced_prompt_display = gr.Textbox(
|
584 |
+
label="Enhanced Prompt",
|
585 |
+
interactive=False,
|
586 |
+
lines=4,
|
587 |
+
visible=False
|
588 |
+
)
|
589 |
+
|
590 |
+
prompt_choice = gr.Radio(
|
591 |
+
choices=["Keep Enhanced", "Keep Original"],
|
592 |
+
label="Choose Prompt",
|
593 |
+
visible=False
|
594 |
+
)
|
595 |
+
|
596 |
+
save_model_button = gr.Button("πΎ Save Model", variant="primary", visible=False)
|
597 |
+
save_status = gr.Textbox(label="Status", interactive=False, visible=False)
|
598 |
+
|
599 |
+
# Right Column - Model Operations
|
600 |
+
with gr.Column(scale=2):
|
601 |
+
gr.Markdown("### π οΈ Model Operations")
|
602 |
+
|
603 |
+
with gr.Tabs():
|
604 |
+
# Chatbot Tab
|
605 |
+
with gr.TabItem("π¬ Chatbot"):
|
606 |
+
selected_model_display = gr.Textbox(
|
607 |
+
label="Currently Selected Model",
|
608 |
+
interactive=False
|
609 |
+
)
|
610 |
+
|
611 |
+
chatbot_interface = gr.Chatbot(
|
612 |
+
type="messages",
|
613 |
+
height=400,
|
614 |
+
show_label=False
|
615 |
+
)
|
616 |
+
|
617 |
+
with gr.Row():
|
618 |
+
msg_input = gr.Textbox(
|
619 |
+
placeholder="Enter your message...",
|
620 |
+
label="Message",
|
621 |
+
scale=4
|
622 |
+
)
|
623 |
+
send_button = gr.Button("π€ Send", variant="primary", scale=1)
|
624 |
+
|
625 |
+
clear_chat = gr.Button("ποΈ Clear Chat", variant="secondary")
|
626 |
+
|
627 |
+
# Drift Analysis Tab
|
628 |
+
with gr.TabItem("π Drift Analysis"):
|
629 |
+
drift_model_display = gr.Textbox(
|
630 |
+
label="Model for Drift Analysis",
|
631 |
+
interactive=False
|
632 |
+
)
|
633 |
+
|
634 |
+
with gr.Row():
|
635 |
+
calculate_drift_button = gr.Button("π Calculate New Drift", variant="primary")
|
636 |
+
refresh_history_button = gr.Button("π Refresh History", variant="secondary")
|
637 |
+
|
638 |
+
drift_result = gr.Textbox(label="Latest Drift Calculation", interactive=False)
|
639 |
+
|
640 |
+
gr.Markdown("#### π Drift History")
|
641 |
+
drift_history_display = gr.JSON(label="Drift History Data")
|
642 |
+
|
643 |
+
gr.Markdown("#### π Drift Chart")
|
644 |
+
drift_chart = gr.Plot(label="Drift Over Time")
|
645 |
+
|
646 |
+
# Event Handlers with better error handling
|
647 |
+
search_box.change(update_model_dropdown, inputs=[search_box], outputs=[model_dropdown])
|
648 |
+
model_dropdown.change(on_model_select, inputs=[model_dropdown],
|
649 |
+
outputs=[selected_model_display, drift_model_display])
|
650 |
+
|
651 |
+
create_new_button.click(show_create_new, outputs=[create_new_section, new_model_name])
|
652 |
+
cancel_button.click(cancel_create_new,
|
653 |
+
outputs=[create_new_section, new_model_name, new_system_prompt, enhanced_prompt_display,
|
654 |
+
prompt_choice, save_model_button, save_status])
|
655 |
+
|
656 |
+
enhance_button.click(enhance_prompt, inputs=[new_system_prompt],
|
657 |
+
outputs=[enhanced_prompt_display, prompt_choice, save_model_button])
|
658 |
+
save_model_button.click(save_new_model,
|
659 |
+
inputs=[new_model_name, new_llm, new_system_prompt, enhanced_prompt_display,
|
660 |
+
prompt_choice],
|
661 |
+
outputs=[save_status, save_status, model_dropdown])
|
662 |
+
|
663 |
+
send_button.click(chatbot_response, inputs=[msg_input, chatbot_interface, model_dropdown],
|
664 |
+
outputs=[chatbot_interface, msg_input])
|
665 |
+
msg_input.submit(chatbot_response, inputs=[msg_input, chatbot_interface, model_dropdown],
|
666 |
+
outputs=[chatbot_interface, msg_input])
|
667 |
+
clear_chat.click(lambda: [], outputs=[chatbot_interface])
|
668 |
+
|
669 |
+
calculate_drift_button.click(calculate_drift, inputs=[model_dropdown], outputs=[drift_result])
|
670 |
+
refresh_history_button.click(refresh_drift_history, inputs=[model_dropdown],
|
671 |
+
outputs=[drift_history_display, drift_chart])
|
672 |
+
|
673 |
+
demo.load(initialize_interface,
|
674 |
+
outputs=[model_dropdown, new_model_name, selected_model_display, drift_model_display])
|
675 |
+
|
676 |
+
return demo
|
677 |
+
|
678 |
+
|
679 |
+
def main():
|
680 |
+
"""Main function to launch the application"""
|
681 |
+
print("π Starting AI Model Management Platform...")
|
682 |
+
|
683 |
+
# Create the interface
|
684 |
+
demo = create_interface()
|
685 |
+
|
686 |
+
# Launch configuration
|
687 |
+
launch_config = {
|
688 |
+
"server_name": "0.0.0.0", # Listen on all interfaces
|
689 |
+
"server_port": 7860, # Default Gradio port
|
690 |
+
"share": False, # Set to True if you want a public link
|
691 |
+
"show_error": True, # Show detailed errors
|
692 |
+
"quiet": False, # Set to True to reduce output
|
693 |
+
"show_api": True, # Show API docs
|
694 |
+
}
|
695 |
+
|
696 |
+
print("π‘ Launching Gradio interface...")
|
697 |
+
print(f"π Server will be available at:")
|
698 |
+
print(f" - Local: http://localhost:{launch_config['server_port']}")
|
699 |
+
print(f" - Network: http://0.0.0.0:{launch_config['server_port']}")
|
700 |
+
|
701 |
+
try:
|
702 |
+
demo.launch(**launch_config)
|
703 |
+
except Exception as e:
|
704 |
+
print(f"β Failed to launch Gradio interface: {e}")
|
705 |
+
print("π§ Troubleshooting suggestions:")
|
706 |
+
print(" 1. Check if port 7860 is already in use")
|
707 |
+
print(" 2. Try a different port: demo.launch(server_port=7861)")
|
708 |
+
print(" 3. Check firewall settings")
|
709 |
+
print(" 4. Ensure Gradio is properly installed: pip install gradio")
|
710 |
+
return False
|
711 |
+
|
712 |
+
return True
|
713 |
+
|
714 |
|
715 |
if __name__ == "__main__":
|
716 |
+
try:
|
717 |
+
main()
|
718 |
+
except KeyboardInterrupt:
|
719 |
+
print("\nπ Shutting down gracefully...")
|
720 |
+
except Exception as e:
|
721 |
+
print(f"β Application error: {e}")
|
722 |
+
sys.exit(1)
|
database_module/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#database_module/__init__.py
|
2 |
from .db import init_db
|
3 |
from .mcp_tools import (
|
4 |
get_all_models_handler,
|
@@ -7,4 +7,4 @@ from .mcp_tools import (
|
|
7 |
get_baseline_diagnostics,
|
8 |
save_drift_score,
|
9 |
register_model_with_capabilities
|
10 |
-
)
|
|
|
1 |
+
# database_module/__init__.py
|
2 |
from .db import init_db
|
3 |
from .mcp_tools import (
|
4 |
get_all_models_handler,
|
|
|
7 |
get_baseline_diagnostics,
|
8 |
save_drift_score,
|
9 |
register_model_with_capabilities
|
10 |
+
)
|
database_module/db.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#database_module/db.py
|
2 |
import os
|
3 |
from sqlalchemy import create_engine, inspect, text
|
4 |
from sqlalchemy.ext.declarative import declarative_base
|
@@ -26,25 +26,34 @@ SessionLocal = sessionmaker(
|
|
26 |
)
|
27 |
Base = declarative_base()
|
28 |
|
|
|
29 |
def apply_migrations():
|
30 |
"""
|
31 |
Apply any necessary migrations to existing tables.
|
32 |
"""
|
33 |
with engine.connect() as conn:
|
34 |
-
# Check if the models table exists and has the
|
35 |
inspector = inspect(engine)
|
36 |
if "models" in inspector.get_table_names():
|
37 |
columns = [col['name'] for col in inspector.get_columns('models')]
|
|
|
|
|
38 |
if "capabilities" not in columns:
|
39 |
-
# Add capabilities column to models table
|
40 |
conn.execute(text("ALTER TABLE models ADD COLUMN capabilities TEXT"))
|
41 |
conn.commit()
|
42 |
print("Migration: Added capabilities column to models table")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
def init_db():
|
45 |
"""
|
46 |
Create tables if they don't exist.
|
47 |
Call this once at application startup.
|
48 |
"""
|
49 |
Base.metadata.create_all(bind=engine)
|
50 |
-
apply_migrations()
|
|
|
1 |
+
# database_module/db.py
|
2 |
import os
|
3 |
from sqlalchemy import create_engine, inspect, text
|
4 |
from sqlalchemy.ext.declarative import declarative_base
|
|
|
26 |
)
|
27 |
Base = declarative_base()
|
28 |
|
29 |
+
|
30 |
def apply_migrations():
|
31 |
"""
|
32 |
Apply any necessary migrations to existing tables.
|
33 |
"""
|
34 |
with engine.connect() as conn:
|
35 |
+
# Check if the models table exists and has the required columns
|
36 |
inspector = inspect(engine)
|
37 |
if "models" in inspector.get_table_names():
|
38 |
columns = [col['name'] for col in inspector.get_columns('models')]
|
39 |
+
|
40 |
+
# Add capabilities column if missing
|
41 |
if "capabilities" not in columns:
|
|
|
42 |
conn.execute(text("ALTER TABLE models ADD COLUMN capabilities TEXT"))
|
43 |
conn.commit()
|
44 |
print("Migration: Added capabilities column to models table")
|
45 |
|
46 |
+
# Add updated column if missing
|
47 |
+
if "updated" not in columns:
|
48 |
+
conn.execute(text("ALTER TABLE models ADD COLUMN updated DATETIME"))
|
49 |
+
conn.commit()
|
50 |
+
print("Migration: Added updated column to models table")
|
51 |
+
|
52 |
+
|
53 |
def init_db():
|
54 |
"""
|
55 |
Create tables if they don't exist.
|
56 |
Call this once at application startup.
|
57 |
"""
|
58 |
Base.metadata.create_all(bind=engine)
|
59 |
+
apply_migrations()
|
database_module/mcp_tools.py
CHANGED
@@ -16,7 +16,11 @@ def get_all_models_handler(_: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
16 |
with SessionLocal() as session:
|
17 |
entries = session.query(ModelEntry).all()
|
18 |
return [
|
19 |
-
{
|
|
|
|
|
|
|
|
|
20 |
for e in entries
|
21 |
]
|
22 |
|
@@ -39,7 +43,11 @@ def search_models_handler(params: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
39 |
)
|
40 |
entries = query.all()
|
41 |
return [
|
42 |
-
{
|
|
|
|
|
|
|
|
|
43 |
for e in entries
|
44 |
]
|
45 |
|
@@ -53,9 +61,22 @@ def get_model_details_handler(params: Dict[str, Any]) -> Dict[str, Any]:
|
|
53 |
with SessionLocal() as session:
|
54 |
e = session.query(ModelEntry).filter_by(name=model_name).first()
|
55 |
if not e:
|
56 |
-
return {
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
def save_model_handler(params: Dict[str, Any]) -> Dict[str, Any]:
|
@@ -71,11 +92,16 @@ def save_model_handler(params: Dict[str, Any]) -> Dict[str, Any]:
|
|
71 |
# New model; created today
|
72 |
entry = ModelEntry(
|
73 |
name=name,
|
74 |
-
created=datetime.
|
75 |
-
description=""
|
|
|
76 |
)
|
77 |
session.add(entry)
|
78 |
-
|
|
|
|
|
|
|
|
|
79 |
session.commit()
|
80 |
return {"message": f"Model '{name}' saved."}
|
81 |
|
@@ -88,7 +114,7 @@ def calculate_drift_handler(params: Dict[str, Any]) -> Dict[str, Any]:
|
|
88 |
import random
|
89 |
name = params.get("model_name")
|
90 |
score = round(random.uniform(0, 1), 3)
|
91 |
-
today = datetime.
|
92 |
with SessionLocal() as session:
|
93 |
entry = DriftEntry(
|
94 |
model_name=name,
|
@@ -117,10 +143,10 @@ def get_drift_history_handler(params: Dict[str, Any]) -> List[Dict[str, Any]]:
|
|
117 |
# === New functions for drift detection database operations ===
|
118 |
|
119 |
def save_diagnostic_data(
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
) -> None:
|
125 |
"""
|
126 |
Save diagnostic questions and answers to the database
|
@@ -131,7 +157,7 @@ def save_diagnostic_data(
|
|
131 |
if not model:
|
132 |
model = ModelEntry(
|
133 |
name=model_name,
|
134 |
-
created=datetime.
|
135 |
description=""
|
136 |
)
|
137 |
session.add(model)
|
@@ -142,7 +168,7 @@ def save_diagnostic_data(
|
|
142 |
is_baseline=1 if is_baseline else 0,
|
143 |
questions=questions,
|
144 |
answers=answers,
|
145 |
-
created=datetime.
|
146 |
)
|
147 |
session.add(diagnostic)
|
148 |
session.commit()
|
@@ -153,9 +179,9 @@ def get_baseline_diagnostics(model_name: str) -> Optional[Dict[str, Any]]:
|
|
153 |
Retrieve baseline diagnostics for a model
|
154 |
"""
|
155 |
with SessionLocal() as session:
|
156 |
-
baseline = session.query(DiagnosticData)\
|
157 |
-
.filter_by(model_name=model_name, is_baseline=1)\
|
158 |
-
.order_by(DiagnosticData.created.desc())\
|
159 |
.first()
|
160 |
|
161 |
if not baseline:
|
@@ -181,7 +207,7 @@ def save_drift_score(model_name: str, drift_score: str) -> None:
|
|
181 |
with SessionLocal() as session:
|
182 |
entry = DriftEntry(
|
183 |
model_name=model_name,
|
184 |
-
date=datetime.
|
185 |
drift_score=score_float
|
186 |
)
|
187 |
session.add(entry)
|
@@ -197,13 +223,14 @@ def register_model_with_capabilities(model_name: str, capabilities: str) -> None
|
|
197 |
|
198 |
if model:
|
199 |
model.capabilities = capabilities
|
|
|
200 |
else:
|
201 |
model = ModelEntry(
|
202 |
name=model_name,
|
203 |
-
created=datetime.
|
204 |
capabilities=capabilities,
|
205 |
description=""
|
206 |
)
|
207 |
session.add(model)
|
208 |
|
209 |
-
session.commit()
|
|
|
16 |
with SessionLocal() as session:
|
17 |
entries = session.query(ModelEntry).all()
|
18 |
return [
|
19 |
+
{
|
20 |
+
"name": e.name,
|
21 |
+
"created": e.created.isoformat() if e.created else datetime.now().isoformat(),
|
22 |
+
"description": e.description or ""
|
23 |
+
}
|
24 |
for e in entries
|
25 |
]
|
26 |
|
|
|
43 |
)
|
44 |
entries = query.all()
|
45 |
return [
|
46 |
+
{
|
47 |
+
"name": e.name,
|
48 |
+
"created": e.created.isoformat() if e.created else datetime.now().isoformat(),
|
49 |
+
"description": e.description or ""
|
50 |
+
}
|
51 |
for e in entries
|
52 |
]
|
53 |
|
|
|
61 |
with SessionLocal() as session:
|
62 |
e = session.query(ModelEntry).filter_by(name=model_name).first()
|
63 |
if not e:
|
64 |
+
return {
|
65 |
+
"name": model_name,
|
66 |
+
"system_prompt": "You are a helpful AI assistant.",
|
67 |
+
"description": ""
|
68 |
+
}
|
69 |
+
|
70 |
+
# Extract system prompt from capabilities if available
|
71 |
+
system_prompt = "You are a helpful AI assistant."
|
72 |
+
if e.capabilities and "System Prompt: " in e.capabilities:
|
73 |
+
system_prompt = e.capabilities.split("System Prompt: ")[1]
|
74 |
+
|
75 |
+
return {
|
76 |
+
"name": e.name,
|
77 |
+
"system_prompt": system_prompt,
|
78 |
+
"description": e.description or ""
|
79 |
+
}
|
80 |
|
81 |
|
82 |
def save_model_handler(params: Dict[str, Any]) -> Dict[str, Any]:
|
|
|
92 |
# New model; created today
|
93 |
entry = ModelEntry(
|
94 |
name=name,
|
95 |
+
created=datetime.now(),
|
96 |
+
description="",
|
97 |
+
capabilities=f"System Prompt: {prompt}"
|
98 |
)
|
99 |
session.add(entry)
|
100 |
+
else:
|
101 |
+
# Update existing model
|
102 |
+
entry.capabilities = f"System Prompt: {prompt}"
|
103 |
+
entry.updated = datetime.now()
|
104 |
+
|
105 |
session.commit()
|
106 |
return {"message": f"Model '{name}' saved."}
|
107 |
|
|
|
114 |
import random
|
115 |
name = params.get("model_name")
|
116 |
score = round(random.uniform(0, 1), 3)
|
117 |
+
today = datetime.now()
|
118 |
with SessionLocal() as session:
|
119 |
entry = DriftEntry(
|
120 |
model_name=name,
|
|
|
143 |
# === New functions for drift detection database operations ===
|
144 |
|
145 |
def save_diagnostic_data(
|
146 |
+
model_name: str,
|
147 |
+
questions: list,
|
148 |
+
answers: list,
|
149 |
+
is_baseline: bool = False
|
150 |
) -> None:
|
151 |
"""
|
152 |
Save diagnostic questions and answers to the database
|
|
|
157 |
if not model:
|
158 |
model = ModelEntry(
|
159 |
name=model_name,
|
160 |
+
created=datetime.now(),
|
161 |
description=""
|
162 |
)
|
163 |
session.add(model)
|
|
|
168 |
is_baseline=1 if is_baseline else 0,
|
169 |
questions=questions,
|
170 |
answers=answers,
|
171 |
+
created=datetime.now()
|
172 |
)
|
173 |
session.add(diagnostic)
|
174 |
session.commit()
|
|
|
179 |
Retrieve baseline diagnostics for a model
|
180 |
"""
|
181 |
with SessionLocal() as session:
|
182 |
+
baseline = session.query(DiagnosticData) \
|
183 |
+
.filter_by(model_name=model_name, is_baseline=1) \
|
184 |
+
.order_by(DiagnosticData.created.desc()) \
|
185 |
.first()
|
186 |
|
187 |
if not baseline:
|
|
|
207 |
with SessionLocal() as session:
|
208 |
entry = DriftEntry(
|
209 |
model_name=model_name,
|
210 |
+
date=datetime.now(),
|
211 |
drift_score=score_float
|
212 |
)
|
213 |
session.add(entry)
|
|
|
223 |
|
224 |
if model:
|
225 |
model.capabilities = capabilities
|
226 |
+
model.updated = datetime.now()
|
227 |
else:
|
228 |
model = ModelEntry(
|
229 |
name=model_name,
|
230 |
+
created=datetime.now(),
|
231 |
capabilities=capabilities,
|
232 |
description=""
|
233 |
)
|
234 |
session.add(model)
|
235 |
|
236 |
+
session.commit()
|
database_module/models.py
CHANGED
@@ -8,16 +8,17 @@ class ModelEntry(Base):
|
|
8 |
|
9 |
id = Column(Integer, primary_key=True, index=True)
|
10 |
name = Column(String, unique=True, nullable=False, index=True)
|
11 |
-
created = Column(
|
|
|
12 |
description = Column(Text, nullable=True)
|
13 |
-
capabilities = Column(Text, nullable=True) #
|
14 |
|
15 |
class DriftEntry(Base):
|
16 |
__tablename__ = "drift_history"
|
17 |
|
18 |
id = Column(Integer, primary_key=True, index=True)
|
19 |
model_name = Column(String, nullable=False, index=True)
|
20 |
-
date = Column(DateTime, nullable=False, default=datetime.
|
21 |
drift_score = Column(Float, nullable=True)
|
22 |
|
23 |
class DiagnosticData(Base):
|
@@ -25,7 +26,7 @@ class DiagnosticData(Base):
|
|
25 |
|
26 |
id = Column(Integer, primary_key=True, index=True)
|
27 |
model_name = Column(String, nullable=False, index=True)
|
28 |
-
created = Column(DateTime, nullable=False, default=datetime.
|
29 |
is_baseline = Column(Integer, nullable=False, default=0) # 0=latest, 1=baseline
|
30 |
questions = Column(JSON, nullable=True)
|
31 |
-
answers = Column(JSON, nullable=True)
|
|
|
8 |
|
9 |
id = Column(Integer, primary_key=True, index=True)
|
10 |
name = Column(String, unique=True, nullable=False, index=True)
|
11 |
+
created = Column(DateTime, nullable=False, default=datetime.now)
|
12 |
+
updated = Column(DateTime, nullable=True) # Added updated field
|
13 |
description = Column(Text, nullable=True)
|
14 |
+
capabilities = Column(Text, nullable=True) # Store model_capabilities
|
15 |
|
16 |
class DriftEntry(Base):
|
17 |
__tablename__ = "drift_history"
|
18 |
|
19 |
id = Column(Integer, primary_key=True, index=True)
|
20 |
model_name = Column(String, nullable=False, index=True)
|
21 |
+
date = Column(DateTime, nullable=False, default=datetime.now)
|
22 |
drift_score = Column(Float, nullable=True)
|
23 |
|
24 |
class DiagnosticData(Base):
|
|
|
26 |
|
27 |
id = Column(Integer, primary_key=True, index=True)
|
28 |
model_name = Column(String, nullable=False, index=True)
|
29 |
+
created = Column(DateTime, nullable=False, default=datetime.now)
|
30 |
is_baseline = Column(Integer, nullable=False, default=0) # 0=latest, 1=baseline
|
31 |
questions = Column(JSON, nullable=True)
|
32 |
+
answers = Column(JSON, nullable=True)
|
drift_detector.sqlite3
CHANGED
Binary files a/drift_detector.sqlite3 and b/drift_detector.sqlite3 differ
|
|
fastagent.config.yaml
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
-
|
2 |
-
servers:
|
3 |
-
drift-server:
|
4 |
-
transport: stdio
|
5 |
-
command: "python"
|
6 |
-
args: ["server.py"]
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# fastagent.config.yaml
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
servers:
|
4 |
+
drift-server:
|
5 |
+
transport: stdio
|
6 |
+
# Launch drift-server via Python in unbuffered mode so JSONβRPC messages flow correctly
|
7 |
+
command: python
|
8 |
+
args:
|
9 |
+
- -u
|
10 |
+
- server.py
|
11 |
|
12 |
+
# Your model defaults (unchanged)
|
13 |
+
default_model: generic.llama3.1
|
14 |
+
generic:
|
15 |
+
api_key: ollama # placeholder
|
16 |
+
base_url: http://localhost:11434/v1
|
ourllm.py
CHANGED
@@ -4,87 +4,107 @@ import mcp.types as types
|
|
4 |
from langchain.chat_models import init_chat_model
|
5 |
from dotenv import load_dotenv
|
6 |
import os
|
|
|
|
|
7 |
# Load environment variables from .env file
|
8 |
load_dotenv()
|
9 |
print("GROQ_API_KEY is set:", "GROQ_API_KEY" in os.environ)
|
10 |
|
11 |
-
llm = init_chat_model("llama-3.1-8b-instant",model_provider='groq')
|
12 |
|
13 |
|
14 |
-
def genratequestionnaire(model: str, capabilities: str) -> List[
|
15 |
"""
|
16 |
Generate a baseline questionnaire for the given model.
|
17 |
-
Returns a list of
|
18 |
"""
|
19 |
global llm
|
20 |
questions = []
|
21 |
previously_generated = ""
|
22 |
|
23 |
-
for i in range(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
47 |
"""
|
48 |
Use the LLM to compare the old and new answers to compute a drift score.
|
49 |
-
Returns a
|
50 |
"""
|
51 |
global llm
|
52 |
|
53 |
if not old_answers or not new_answers:
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
56 |
# Prepare a prompt with old and new answers for the LLM to analyze
|
57 |
prompt = "You're tasked with detecting semantic drift between two sets of model responses.\n\n"
|
58 |
prompt += "Original responses:\n"
|
59 |
for i, ans in enumerate(old_answers):
|
60 |
-
prompt += f"Response {i+1}: {ans}\n\n"
|
61 |
|
62 |
prompt += "New responses:\n"
|
63 |
for i, ans in enumerate(new_answers):
|
64 |
-
prompt += f"Response {i+1}: {ans}\n\n"
|
65 |
|
66 |
-
prompt += "Analyze the semantic differences between the original and new responses. "
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
# Get the drift assessment from the LLM
|
72 |
response = llm.invoke(prompt)
|
73 |
drift_text = str(response.content).strip()
|
74 |
|
75 |
# Extract just the numerical value if there's extra text
|
76 |
-
import re
|
77 |
drift_match = re.search(r'(\d+\.?\d*)', drift_text)
|
78 |
if drift_match:
|
79 |
drift_pct = float(drift_match.group(1))
|
|
|
80 |
else:
|
81 |
-
# Fallback
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain.chat_models import init_chat_model
|
5 |
from dotenv import load_dotenv
|
6 |
import os
|
7 |
+
import re
|
8 |
+
|
9 |
# Load environment variables from .env file
|
10 |
load_dotenv()
|
11 |
print("GROQ_API_KEY is set:", "GROQ_API_KEY" in os.environ)
|
12 |
|
13 |
+
llm = init_chat_model("llama-3.1-8b-instant", model_provider='groq')
|
14 |
|
15 |
|
16 |
+
def genratequestionnaire(model: str, capabilities: str) -> List[str]:
|
17 |
"""
|
18 |
Generate a baseline questionnaire for the given model.
|
19 |
+
Returns a list of question strings for diagnostic purposes.
|
20 |
"""
|
21 |
global llm
|
22 |
questions = []
|
23 |
previously_generated = ""
|
24 |
|
25 |
+
for i in range(5):
|
26 |
+
try:
|
27 |
+
response = llm.invoke(
|
28 |
+
f"Generate a questionnaire for a model with the following capabilities:\n"
|
29 |
+
f"Model Name: {model}\n"
|
30 |
+
f"Capabilities Overview:\n{capabilities}\n"
|
31 |
+
f"Please provide one more question that covers the model's capabilities and typical use-cases.\n"
|
32 |
+
f"Previously generated questions:\n{previously_generated}\n"
|
33 |
+
f"Question {i + 1}:"
|
34 |
+
)
|
35 |
+
new_question = str(response.content).strip()
|
36 |
+
questions.append(new_question)
|
37 |
+
|
38 |
+
# Update previously_generated to include the new question
|
39 |
+
if previously_generated:
|
40 |
+
previously_generated += "\n"
|
41 |
+
previously_generated += f"Question {i + 1}: {new_question}"
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error generating question {i + 1}: {e}")
|
45 |
+
# Fallback question
|
46 |
+
questions.append(f"What are your capabilities as {model}?")
|
47 |
+
|
48 |
+
return questions
|
49 |
+
|
50 |
+
|
51 |
+
def gradeanswers(old_answers: List[str], new_answers: List[str]) -> str:
|
52 |
"""
|
53 |
Use the LLM to compare the old and new answers to compute a drift score.
|
54 |
+
Returns a drift percentage as a string.
|
55 |
"""
|
56 |
global llm
|
57 |
|
58 |
if not old_answers or not new_answers:
|
59 |
+
return "0"
|
60 |
+
|
61 |
+
if len(old_answers) != len(new_answers):
|
62 |
+
return "100" # Major drift if answer count differs
|
63 |
+
|
64 |
+
try:
|
65 |
# Prepare a prompt with old and new answers for the LLM to analyze
|
66 |
prompt = "You're tasked with detecting semantic drift between two sets of model responses.\n\n"
|
67 |
prompt += "Original responses:\n"
|
68 |
for i, ans in enumerate(old_answers):
|
69 |
+
prompt += f"Response {i + 1}: {ans}\n\n"
|
70 |
|
71 |
prompt += "New responses:\n"
|
72 |
for i, ans in enumerate(new_answers):
|
73 |
+
prompt += f"Response {i + 1}: {ans}\n\n"
|
74 |
|
75 |
+
prompt += ("Analyze the semantic differences between the original and new responses. "
|
76 |
+
"Provide a drift percentage score (0-100%) that represents how much the meaning, "
|
77 |
+
"intent, or capabilities have changed between the two sets of responses. "
|
78 |
+
"Only return the numerical percentage value without any explanation or additional text.")
|
79 |
|
80 |
# Get the drift assessment from the LLM
|
81 |
response = llm.invoke(prompt)
|
82 |
drift_text = str(response.content).strip()
|
83 |
|
84 |
# Extract just the numerical value if there's extra text
|
|
|
85 |
drift_match = re.search(r'(\d+\.?\d*)', drift_text)
|
86 |
if drift_match:
|
87 |
drift_pct = float(drift_match.group(1))
|
88 |
+
return str(int(drift_pct)) # Return as integer string
|
89 |
else:
|
90 |
+
# Fallback: calculate simple text similarity
|
91 |
+
similarity_scores = []
|
92 |
+
for old, new in zip(old_answers, new_answers):
|
93 |
+
similarity = difflib.SequenceMatcher(None, old, new).ratio()
|
94 |
+
similarity_scores.append(similarity)
|
95 |
+
|
96 |
+
avg_similarity = sum(similarity_scores) / len(similarity_scores)
|
97 |
+
drift_pct = (1 - avg_similarity) * 100
|
98 |
+
return str(int(drift_pct))
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
print(f"Error grading answers: {e}")
|
102 |
+
# Fallback: calculate simple text similarity
|
103 |
+
similarity_scores = []
|
104 |
+
for old, new in zip(old_answers, new_answers):
|
105 |
+
similarity = difflib.SequenceMatcher(None, old, new).ratio()
|
106 |
+
similarity_scores.append(similarity)
|
107 |
+
|
108 |
+
avg_similarity = sum(similarity_scores) / len(similarity_scores)
|
109 |
+
drift_pct = (1 - avg_similarity) * 100
|
110 |
+
return str(int(drift_pct))
|
server.py
CHANGED
@@ -25,6 +25,7 @@ init_db()
|
|
25 |
|
26 |
app = Server("mcp-drift-server")
|
27 |
|
|
|
28 |
# === Tool Manifest ===
|
29 |
@app.list_tools()
|
30 |
async def list_tools() -> List[types.Tool]:
|
@@ -36,7 +37,8 @@ async def list_tools() -> List[types.Tool]:
|
|
36 |
"type": "object",
|
37 |
"properties": {
|
38 |
"model": {"type": "string", "description": "The name of the model to run diagnostics on"},
|
39 |
-
"model_capabilities": {"type": "string",
|
|
|
40 |
},
|
41 |
"required": ["model", "model_capabilities"]
|
42 |
},
|
@@ -46,7 +48,8 @@ async def list_tools() -> List[types.Tool]:
|
|
46 |
description="Re-run diagnostics and compare to baseline for drift scoring.",
|
47 |
inputSchema={
|
48 |
"type": "object",
|
49 |
-
"properties": {
|
|
|
50 |
"required": ["model"]
|
51 |
},
|
52 |
),
|
@@ -66,132 +69,213 @@ async def list_tools() -> List[types.Tool]:
|
|
66 |
),
|
67 |
]
|
68 |
|
|
|
69 |
# === Sampling Wrapper ===
|
70 |
async def sample(messages: list[types.SamplingMessage], max_tokens=600) -> CreateMessageResult:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# === Core Logic ===
|
78 |
async def run_initial_diagnostics(arguments: Dict[str, Any]) -> List[types.TextContent]:
|
79 |
model = arguments["model"]
|
80 |
capabilities = arguments["model_capabilities"]
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
answers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
return [types.TextContent(type="text", text=f"β
Baseline stored for model: {model}")]
|
99 |
|
100 |
async def check_drift(arguments: Dict[str, Any]) -> List[types.TextContent]:
|
101 |
model = arguments["model"]
|
102 |
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
return [
|
145 |
-
types.TextContent(type="text", text=f"Drift score for {model}: {drift_score}"),
|
146 |
-
types.TextContent(type="text", text=alert)
|
147 |
-
]
|
148 |
|
149 |
# Database tool handlers
|
150 |
async def get_all_models_handler_async(_: Dict[str, Any]) -> List[types.TextContent]:
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
model_list = "\n".join([f"β’ {m['name']} - {m['description']}" for m in models])
|
156 |
-
return [types.TextContent(
|
157 |
-
type="text",
|
158 |
-
text=f"Registered models:\n{model_list}"
|
159 |
-
)]
|
160 |
|
161 |
async def search_models_handler_async(arguments: Dict[str, Any]) -> List[types.TextContent]:
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
return [types.TextContent(
|
167 |
type="text",
|
168 |
-
text=f"
|
169 |
)]
|
|
|
|
|
|
|
170 |
|
171 |
-
model_list = "\n".join([f"β’ {m['name']} - {m['description']}" for m in models])
|
172 |
-
return [types.TextContent(
|
173 |
-
type="text",
|
174 |
-
text=f"Models matching '{query}':\n{model_list}"
|
175 |
-
)]
|
176 |
|
177 |
# === Dispatcher ===
|
178 |
@app.call_tool()
|
179 |
async def dispatch_tool(name: str, arguments: Dict[str, Any] | None = None):
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
# === Entrypoint ===
|
192 |
async def main():
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
195 |
|
196 |
if __name__ == "__main__":
|
197 |
-
asyncio.run(main())
|
|
|
25 |
|
26 |
app = Server("mcp-drift-server")
|
27 |
|
28 |
+
|
29 |
# === Tool Manifest ===
|
30 |
@app.list_tools()
|
31 |
async def list_tools() -> List[types.Tool]:
|
|
|
37 |
"type": "object",
|
38 |
"properties": {
|
39 |
"model": {"type": "string", "description": "The name of the model to run diagnostics on"},
|
40 |
+
"model_capabilities": {"type": "string",
|
41 |
+
"description": "Full description of the model's capabilities, along with the system prompt."}
|
42 |
},
|
43 |
"required": ["model", "model_capabilities"]
|
44 |
},
|
|
|
48 |
description="Re-run diagnostics and compare to baseline for drift scoring.",
|
49 |
inputSchema={
|
50 |
"type": "object",
|
51 |
+
"properties": {
|
52 |
+
"model": {"type": "string", "description": "The name of the model to run diagnostics on"}},
|
53 |
"required": ["model"]
|
54 |
},
|
55 |
),
|
|
|
69 |
),
|
70 |
]
|
71 |
|
72 |
+
|
73 |
# === Sampling Wrapper ===
|
74 |
async def sample(messages: list[types.SamplingMessage], max_tokens=600) -> CreateMessageResult:
|
75 |
+
try:
|
76 |
+
return await app.request_context.session.create_message(
|
77 |
+
messages=messages,
|
78 |
+
max_tokens=max_tokens,
|
79 |
+
temperature=0.7
|
80 |
+
)
|
81 |
+
except Exception as e:
|
82 |
+
print(f"Error in sampling: {e}")
|
83 |
+
# Return a fallback response
|
84 |
+
return CreateMessageResult(
|
85 |
+
content=types.TextContent(type="text", text="Error generating response"),
|
86 |
+
model="unknown",
|
87 |
+
role="assistant"
|
88 |
+
)
|
89 |
+
|
90 |
|
91 |
# === Core Logic ===
|
92 |
async def run_initial_diagnostics(arguments: Dict[str, Any]) -> List[types.TextContent]:
|
93 |
model = arguments["model"]
|
94 |
capabilities = arguments["model_capabilities"]
|
95 |
|
96 |
+
try:
|
97 |
+
# 1. Generate questionnaire using ourllm (returns list of strings)
|
98 |
+
questions = genratequestionnaire(model, capabilities)
|
99 |
+
|
100 |
+
# 2. Convert questions to sampling messages and get answers
|
101 |
+
answers = []
|
102 |
+
for question_text in questions:
|
103 |
+
try:
|
104 |
+
sampling_msg = types.SamplingMessage(
|
105 |
+
role="user",
|
106 |
+
content=types.TextContent(type="text", text=question_text)
|
107 |
+
)
|
108 |
+
answer_result = await sample([sampling_msg])
|
109 |
+
|
110 |
+
# Extract text content from the answer
|
111 |
+
if hasattr(answer_result, 'content'):
|
112 |
+
if hasattr(answer_result.content, 'text'):
|
113 |
+
answers.append(answer_result.content.text)
|
114 |
+
else:
|
115 |
+
answers.append(str(answer_result.content))
|
116 |
+
else:
|
117 |
+
answers.append("No response generated")
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
print(f"Error getting answer for question '{question_text}': {e}")
|
121 |
+
answers.append(f"Error: {str(e)}")
|
122 |
|
123 |
+
# 3. Save the model capabilities and questions/answers to database
|
124 |
+
try:
|
125 |
+
register_model_with_capabilities(model, capabilities)
|
126 |
+
save_diagnostic_data(
|
127 |
+
model_name=model,
|
128 |
+
questions=questions,
|
129 |
+
answers=answers,
|
130 |
+
is_baseline=True
|
131 |
+
)
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Error saving diagnostic data: {e}")
|
134 |
+
return [types.TextContent(type="text", text=f"β Error saving baseline for {model}: {str(e)}")]
|
135 |
+
|
136 |
+
return [
|
137 |
+
types.TextContent(type="text", text=f"β
Baseline stored for model: {model} ({len(questions)} questions)")]
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
print(f"Error in run_initial_diagnostics: {e}")
|
141 |
+
return [types.TextContent(type="text", text=f"β Error running diagnostics for {model}: {str(e)}")]
|
142 |
|
|
|
143 |
|
144 |
async def check_drift(arguments: Dict[str, Any]) -> List[types.TextContent]:
|
145 |
model = arguments["model"]
|
146 |
|
147 |
+
try:
|
148 |
+
# Get baseline from database
|
149 |
+
baseline = get_baseline_diagnostics(model)
|
150 |
|
151 |
+
# Ensure baseline exists
|
152 |
+
if not baseline:
|
153 |
+
return [types.TextContent(type="text", text=f"β No baseline for model: {model}")]
|
154 |
|
155 |
+
# Get old answers from baseline
|
156 |
+
old_answers = baseline["answers"]
|
157 |
+
questions = baseline["questions"]
|
158 |
+
|
159 |
+
# Ask the model the same questions again
|
160 |
+
new_answers = []
|
161 |
+
for question_text in questions:
|
162 |
+
try:
|
163 |
+
sampling_msg = types.SamplingMessage(
|
164 |
+
role="user",
|
165 |
+
content=types.TextContent(type="text", text=question_text)
|
166 |
+
)
|
167 |
+
answer_result = await sample([sampling_msg])
|
168 |
+
|
169 |
+
# Extract text content from the answer
|
170 |
+
if hasattr(answer_result, 'content'):
|
171 |
+
if hasattr(answer_result.content, 'text'):
|
172 |
+
new_answers.append(answer_result.content.text)
|
173 |
+
else:
|
174 |
+
new_answers.append(str(answer_result.content))
|
175 |
+
else:
|
176 |
+
new_answers.append("No response generated")
|
177 |
+
|
178 |
+
except Exception as e:
|
179 |
+
print(f"Error getting new answer for question '{question_text}': {e}")
|
180 |
+
new_answers.append(f"Error: {str(e)}")
|
181 |
+
|
182 |
+
# Grade the answers and get a drift score (returns string)
|
183 |
+
drift_score_str = gradeanswers(old_answers, new_answers)
|
184 |
+
|
185 |
+
# Save the latest responses and drift score to database
|
186 |
+
try:
|
187 |
+
save_diagnostic_data(
|
188 |
+
model_name=model,
|
189 |
+
questions=questions,
|
190 |
+
answers=new_answers,
|
191 |
+
is_baseline=False
|
192 |
+
)
|
193 |
+
save_drift_score(model, drift_score_str)
|
194 |
+
except Exception as e:
|
195 |
+
print(f"Error saving drift data: {e}")
|
196 |
+
|
197 |
+
# Alert threshold
|
198 |
+
try:
|
199 |
+
score_val = float(drift_score_str)
|
200 |
+
alert = "π¨ Significant drift!" if score_val > 50 else "β
Drift OK"
|
201 |
+
except ValueError:
|
202 |
+
alert = "β οΈ Drift score not numeric"
|
203 |
+
|
204 |
+
return [
|
205 |
+
types.TextContent(type="text", text=f"Drift score for {model}: {drift_score_str}%"),
|
206 |
+
types.TextContent(type="text", text=alert)
|
207 |
+
]
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
print(f"Error in check_drift: {e}")
|
211 |
+
return [types.TextContent(type="text", text=f"β Error checking drift for {model}: {str(e)}")]
|
212 |
|
|
|
|
|
|
|
|
|
213 |
|
214 |
# Database tool handlers
|
215 |
async def get_all_models_handler_async(_: Dict[str, Any]) -> List[types.TextContent]:
|
216 |
+
try:
|
217 |
+
models = get_all_models_handler({})
|
218 |
+
if not models:
|
219 |
+
return [types.TextContent(type="text", text="No models registered.")]
|
220 |
+
|
221 |
+
model_list = "\n".join([f"β’ {m['name']} - {m.get('description', 'No description')}" for m in models])
|
222 |
+
return [types.TextContent(
|
223 |
+
type="text",
|
224 |
+
text=f"Registered models:\n{model_list}"
|
225 |
+
)]
|
226 |
+
except Exception as e:
|
227 |
+
print(f"Error getting all models: {e}")
|
228 |
+
return [types.TextContent(type="text", text=f"β Error retrieving models: {str(e)}")]
|
229 |
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
async def search_models_handler_async(arguments: Dict[str, Any]) -> List[types.TextContent]:
|
232 |
+
try:
|
233 |
+
query = arguments.get("query", "")
|
234 |
+
models = search_models_handler({"search_term": query})
|
235 |
+
|
236 |
+
if not models:
|
237 |
+
return [types.TextContent(
|
238 |
+
type="text",
|
239 |
+
text=f"No models found matching '{query}'."
|
240 |
+
)]
|
241 |
|
242 |
+
model_list = "\n".join([f"β’ {m['name']} - {m.get('description', 'No description')}" for m in models])
|
243 |
return [types.TextContent(
|
244 |
type="text",
|
245 |
+
text=f"Models matching '{query}':\n{model_list}"
|
246 |
)]
|
247 |
+
except Exception as e:
|
248 |
+
print(f"Error searching models: {e}")
|
249 |
+
return [types.TextContent(type="text", text=f"β Error searching models: {str(e)}")]
|
250 |
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
# === Dispatcher ===
|
253 |
@app.call_tool()
|
254 |
async def dispatch_tool(name: str, arguments: Dict[str, Any] | None = None):
|
255 |
+
try:
|
256 |
+
if name == "run_initial_diagnostics":
|
257 |
+
return await run_initial_diagnostics(arguments)
|
258 |
+
elif name == "check_drift":
|
259 |
+
return await check_drift(arguments)
|
260 |
+
elif name == "get_all_models":
|
261 |
+
return await get_all_models_handler_async(arguments or {})
|
262 |
+
elif name == "search_models":
|
263 |
+
return await search_models_handler_async(arguments or {})
|
264 |
+
else:
|
265 |
+
return [types.TextContent(type="text", text=f"β Unknown tool: {name}")]
|
266 |
+
except Exception as e:
|
267 |
+
print(f"Error in dispatch_tool for {name}: {e}")
|
268 |
+
return [types.TextContent(type="text", text=f"β Error executing {name}: {str(e)}")]
|
269 |
+
|
270 |
|
271 |
# === Entrypoint ===
|
272 |
async def main():
|
273 |
+
try:
|
274 |
+
async with stdio_server() as (reader, writer):
|
275 |
+
await app.run(reader, writer, app.create_initialization_options())
|
276 |
+
except Exception as e:
|
277 |
+
print(f"Error running MCP server: {e}")
|
278 |
+
|
279 |
|
280 |
if __name__ == "__main__":
|
281 |
+
asyncio.run(main())
|
test_llm.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# test_llm.py - Create this as a separate file to test your LLM setup
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
print("=== Testing LLM Setup ===")
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
9 |
+
print(f"β
Environment loaded")
|
10 |
+
print(f"π GROQ_API_KEY exists: {'GROQ_API_KEY' in os.environ}")
|
11 |
+
if 'GROQ_API_KEY' in os.environ:
|
12 |
+
key = os.environ['GROQ_API_KEY']
|
13 |
+
print(f"π API Key starts with: {key[:10]}...")
|
14 |
+
|
15 |
+
# Test LLM import
|
16 |
+
try:
|
17 |
+
from ourllm import llm
|
18 |
+
|
19 |
+
print("β
Successfully imported LLM")
|
20 |
+
|
21 |
+
# Test LLM call
|
22 |
+
test_message = "Hello, please respond with 'LLM is working correctly'"
|
23 |
+
print(f"π§ͺ Testing with message: {test_message}")
|
24 |
+
|
25 |
+
response = llm.invoke(test_message)
|
26 |
+
print(f"β
LLM Response: {response.content}")
|
27 |
+
|
28 |
+
except ImportError as e:
|
29 |
+
print(f"β Import error: {e}")
|
30 |
+
except Exception as e:
|
31 |
+
print(f"β LLM call error: {e}")
|
32 |
+
|
33 |
+
print("=== Test Complete ===")
|