drift-detector / app.py
Anurag Prasad
Added basic dashboard layout
506884b
raw
history blame
19.9 kB
import gradio as gr
import asyncio
from typing import Optional, List, Dict
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import json
from datetime import datetime
import plotly.graph_objects as go
import plotly.express as px
class MCPClient:
def __init__(self):
self.session: Optional[ClientSession] = None
self.exit_stack = AsyncExitStack()
async def connect_to_server(self, server_script_path: str = "mcp_server.py"):
"""Connect to MCP server"""
is_python = server_script_path.endswith('.py')
is_js = server_script_path.endswith('.js')
if not (is_python or is_js):
raise ValueError("Server script must be a .py or .js file")
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_script_path],
env=None
)
stdio_transport = await self.exit_stack.enter_async_context(
stdio_client(server_params)
)
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(
ClientSession(self.stdio, self.write)
)
await self.session.initialize()
# List available tools
response = await self.session.list_tools()
tools = response.tools
print("Connected to server with tools:", [tool.name for tool in tools])
async def call_tool(self, tool_name: str, arguments: dict):
"""Call a tool on the MCP server"""
if not self.session:
raise RuntimeError("Not connected to server")
response = await self.session.call_tool(tool_name, arguments)
return response.content
async def close(self):
"""Close the MCP client connection"""
await self.exit_stack.aclose()
# Global MCP client instance
mcp_client = MCPClient()
# Async wrapper functions for Gradio
def run_async(coro):
"""Helper to run async functions in Gradio"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
# Auto-connect to MCP server on startup
def initialize_mcp_connection():
"""Initialize MCP connection on startup"""
try:
run_async(mcp_client.connect_to_server())
print("Successfully connected to MCP server on startup")
return True
except Exception as e:
print(f"Failed to connect to MCP server on startup: {e}")
return False
# MCP client functions
def get_models_from_db():
"""Get all models from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_all_models", {}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error getting models: {e}")
# Fallback data for demonstration
return [
{"name": "llama-3.1-8b-instant", "created": "2025-01-15", "description": "Fast and efficient model for instant responses."},
{"name": "llama3-8b-8192", "created": "2025-02-10", "description": "Extended context window model with 8192 tokens."},
{"name": "gemini-2.5-pro-preview-06-05", "created": "2025-06-05", "description": "Professional preview version of Gemini 2.5."},
{"name": "gemini-2.5-flash-preview-05-20", "created": "2025-05-20", "description": "Flash preview with optimized speed."},
{"name": "gemini-1.5-pro", "created": "2024-12-01", "description": "Stable professional release of Gemini 1.5."}
]
def get_available_model_names():
"""Get list of available model names for dropdown"""
models = get_models_from_db()
return [model["name"] for model in models]
def search_models_in_db(search_term: str):
"""Search models in database via MCP"""
try:
result = run_async(mcp_client.call_tool("search_models", {"search_term": search_term}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error searching models: {e}")
# Fallback search for demonstration
all_models = get_models_from_db()
if not search_term:
return all_models
term = search_term.lower()
return [model for model in all_models if term in model["name"].lower() or term in model["description"].lower()]
def format_dropdown_items(models):
"""Format dropdown items to show model name, creation date, and description preview"""
formatted_items = []
model_mapping = {}
for model in models:
desc_preview = model["description"][:40] + ("..." if len(model["description"]) > 40 else "")
item_label = f"{model['name']} (Created: {model['created']}) - {desc_preview}"
formatted_items.append(item_label)
model_mapping[item_label] = model["name"]
return formatted_items, model_mapping
def extract_model_name_from_dropdown(dropdown_value, model_mapping):
"""Extract actual model name from formatted dropdown value"""
return model_mapping.get(dropdown_value, dropdown_value.split(" (")[0] if dropdown_value else "")
def get_model_details(model_name: str):
"""Get model details from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_model_details", {"model_name": model_name}))
return result
except Exception as e:
print(f"Error getting model details: {e}")
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": ""}
def enhance_prompt_via_mcp(prompt: str):
"""Enhance prompt using MCP server"""
try:
result = run_async(mcp_client.call_tool("enhance_prompt", {"prompt": prompt}))
return result.get("enhanced_prompt", prompt)
except Exception as e:
print(f"Error enhancing prompt: {e}")
return f"Enhanced: {prompt}\n\nAdditional context: Be more specific, helpful, and provide detailed responses while maintaining a professional tone."
def save_model_to_db(model_name: str, system_prompt: str):
"""Save model to database via MCP"""
try:
result = run_async(mcp_client.call_tool("save_model", {
"model_name": model_name,
"system_prompt": system_prompt
}))
return result.get("message", "Model saved successfully!")
except Exception as e:
print(f"Error saving model: {e}")
return f"Error saving model: {e}"
def calculate_drift_via_mcp(model_name: str):
"""Calculate drift for model via MCP"""
try:
result = run_async(mcp_client.call_tool("calculate_drift", {"model_name": model_name}))
return result
except Exception as e:
print(f"Error calculating drift: {e}")
import random
drift_score = round(random.uniform(0.05, 0.25), 3)
return {"drift_score": drift_score, "message": f"Drift calculated and saved for {model_name}"}
def get_drift_history_from_db(model_name: str):
"""Get drift history from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_drift_history", {"model_name": model_name}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error getting drift history: {e}")
# Fallback data for demonstration
return [
{"date": "2025-06-01", "drift_score": 0.12},
{"date": "2025-06-05", "drift_score": 0.18},
{"date": "2025-06-09", "drift_score": 0.15}
]
def create_drift_chart(drift_history):
"""Create drift chart using plotly"""
if not drift_history:
return gr.update(value=None)
dates = [entry["date"] for entry in drift_history]
scores = [entry["drift_score"] for entry in drift_history]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=dates,
y=scores,
mode='lines+markers',
name='Drift Score',
line=dict(color='#ff6b6b', width=3),
marker=dict(size=8, color='#ff6b6b')
))
fig.update_layout(
title='Model Drift Over Time',
xaxis_title='Date',
yaxis_title='Drift Score',
template='plotly_white',
height=400,
showlegend=True
)
return fig
# Global variable to store model mapping
current_model_mapping = {}
# Gradio interface functions
def update_model_dropdown(search_term):
"""Update dropdown choices based on search term"""
global current_model_mapping
if search_term.strip():
models = search_models_in_db(search_term.strip())
else:
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
current_model_mapping = model_mapping
return gr.update(choices=formatted_items, value=formatted_items[0] if formatted_items else None)
def on_model_select(dropdown_value):
"""Handle model selection"""
if not dropdown_value:
return "", ""
actual_model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
return actual_model_name, actual_model_name
def toggle_create_new():
"""Toggle create new model section visibility"""
return gr.update(visible=True)
def cancel_create_new():
"""Cancel create new model"""
return [
gr.update(visible=False), # create_new_section
None, # new_model_name (dropdown)
"", # new_system_prompt
gr.update(visible=False), # enhanced_prompt_display
gr.update(visible=False), # prompt_choice
gr.update(visible=False), # save_model_button
gr.update(visible=False) # save_status
]
def enhance_prompt(original_prompt):
"""Enhance prompt and show options"""
if not original_prompt.strip():
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
]
enhanced = enhance_prompt_via_mcp(original_prompt.strip())
return [
gr.update(value=enhanced, visible=True),
gr.update(visible=True),
gr.update(visible=True)
]
def save_new_model(selected_model_name, original_prompt, enhanced_prompt, choice):
"""Save new model to database"""
if not selected_model_name or not original_prompt.strip():
return [
"Please select a model and enter a system prompt",
gr.update(visible=True),
gr.update()
]
final_prompt = enhanced_prompt if choice == "Keep Enhanced" else original_prompt
status = save_model_to_db(selected_model_name, final_prompt)
# Update dropdown choices
updated_models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(updated_models)
global current_model_mapping
current_model_mapping = model_mapping
return [
status,
gr.update(visible=True),
gr.update(choices=formatted_items)
]
def chatbot_response(message, history, dropdown_value):
"""Generate chatbot response"""
if not message.strip() or not dropdown_value:
return history, ""
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
model_details = get_model_details(model_name)
system_prompt = model_details.get("system_prompt", "")
# Simulate response (replace with actual LLM call)
response = f"[{model_name}] Response to: {message}\n(Using system prompt: {system_prompt[:50]}...)"
history.append([message, response])
return history, ""
def calculate_drift(dropdown_value):
"""Calculate drift for selected model"""
if not dropdown_value:
return "Please select a model first"
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
result = calculate_drift_via_mcp(model_name)
drift_score = result.get("drift_score", 0.0)
message = result.get("message", "")
return f"Drift Score: {drift_score:.3f}\n{message}"
def refresh_drift_history(dropdown_value):
"""Refresh drift history for selected model"""
if not dropdown_value:
return [], gr.update(value=None)
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
history = get_drift_history_from_db(model_name)
chart = create_drift_chart(history)
return history, chart
def initialize_interface():
"""Initialize interface with MCP connection and default data"""
# Connect to MCP server
mcp_connected = initialize_mcp_connection()
# Get initial model data
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
global current_model_mapping
current_model_mapping = model_mapping
# Get available model names for create new model dropdown
available_models = get_available_model_names()
return (
formatted_items, # model_dropdown choices
formatted_items[0] if formatted_items else None, # model_dropdown value
available_models, # new_model_name choices
formatted_items[0].split(" (")[0] if formatted_items else "", # selected_model_display
formatted_items[0].split(" (")[0] if formatted_items else "" # drift_model_display
)
# Create Gradio interface
with gr.Blocks(title="AI Model Management & Interaction Platform") as demo:
gr.Markdown("# AI Model Management & Interaction Platform")
with gr.Row():
# Left Column - Model Selection
with gr.Column(scale=1):
gr.Markdown("### Model Selection")
model_dropdown = gr.Dropdown(
choices=[],
label="Select Model",
interactive=True
)
search_box = gr.Textbox(
placeholder="Search by model name or description...",
label="Search Models"
)
create_new_button = gr.Button("Create New Model", variant="secondary")
# Create New Model Section (Initially Hidden)
with gr.Group(visible=False) as create_new_section:
gr.Markdown("#### Create New Model")
new_model_name = gr.Dropdown(
choices=[],
label="Select Model Name",
interactive=True
)
new_system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Enter system prompt",
lines=3
)
with gr.Row():
enhance_button = gr.Button("Enhance Prompt", variant="primary")
cancel_button = gr.Button("Cancel", variant="secondary")
enhanced_prompt_display = gr.Textbox(
label="Enhanced Prompt",
interactive=False,
lines=4,
visible=False
)
prompt_choice = gr.Radio(
choices=["Keep Enhanced", "Keep Original"],
label="Choose Prompt to Use",
visible=False
)
save_model_button = gr.Button("Save Model", variant="primary", visible=False)
save_status = gr.Textbox(label="Status", interactive=False, visible=False)
# Right Column - Model Operations
with gr.Column(scale=2):
gr.Markdown("### Model Operations")
with gr.Tabs():
# Chatbot Tab
with gr.TabItem("Chatbot"):
selected_model_display = gr.Textbox(
label="Currently Selected Model",
interactive=False
)
chatbot_interface = gr.Chatbot(height=400)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Enter your message...",
label="Message",
scale=4
)
send_button = gr.Button("Send", variant="primary", scale=1)
clear_chat = gr.Button("Clear Chat", variant="secondary")
# Drift Analysis Tab
with gr.TabItem("Drift Analysis"):
drift_model_display = gr.Textbox(
label="Model for Drift Analysis",
interactive=False
)
with gr.Row():
calculate_drift_button = gr.Button("Calculate New Drift", variant="primary")
refresh_history_button = gr.Button("Refresh History", variant="secondary")
drift_result = gr.Textbox(label="Latest Drift Calculation", interactive=False)
gr.Markdown("#### Drift History")
drift_history_display = gr.JSON(label="Drift History Data")
gr.Markdown("#### Drift Chart")
drift_chart = gr.Plot(label="Drift Over Time")
# Event Handlers
# Search functionality - Dynamic update
search_box.change(
update_model_dropdown,
inputs=[search_box],
outputs=[model_dropdown]
)
# Model selection updates
model_dropdown.change(
on_model_select,
inputs=[model_dropdown],
outputs=[selected_model_display, drift_model_display]
)
# Create new model functionality
def show_create_new():
available_models = get_available_model_names()
return gr.update(visible=True), gr.update(choices=available_models)
create_new_button.click(
show_create_new,
outputs=[create_new_section, new_model_name]
)
cancel_button.click(cancel_create_new, outputs=[
create_new_section, new_model_name, new_system_prompt,
enhanced_prompt_display, prompt_choice, save_model_button, save_status
])
# Enhance prompt
enhance_button.click(
enhance_prompt,
inputs=[new_system_prompt],
outputs=[enhanced_prompt_display, prompt_choice, save_model_button]
)
# Save model
save_model_button.click(
save_new_model,
inputs=[new_model_name, new_system_prompt, enhanced_prompt_display, prompt_choice],
outputs=[save_status, save_status, model_dropdown]
)
# Chatbot functionality
send_button.click(
chatbot_response,
inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input]
)
msg_input.submit(
chatbot_response,
inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input]
)
clear_chat.click(lambda: [], outputs=[chatbot_interface])
# Drift analysis functionality
calculate_drift_button.click(
calculate_drift,
inputs=[model_dropdown],
outputs=[drift_result]
)
refresh_history_button.click(
refresh_drift_history,
inputs=[model_dropdown],
outputs=[drift_history_display, drift_chart]
)
# Initialize interface on load
demo.load(
initialize_interface,
outputs=[model_dropdown, model_dropdown, new_model_name, selected_model_display, drift_model_display]
)
if __name__ == "__main__":
demo.launch(share=True)