""" Modal.com Deployment Configuration for Spend Analyzer MCP Enhanced with Claude and SambaNova Cloud API support """ import modal import os from typing import Dict, Any, Optional import json import asyncio from datetime import datetime import logging # Create Modal app app = modal.App("spend-analyzer-mcp-bmt") # Define the container image with all dependencies image = ( modal.Image.debian_slim(python_version="3.11") .pip_install([ "fastapi", "uvicorn", "gradio", "pandas", "numpy", "PyPDF2", "PyMuPDF", "anthropic>=0.7.0", "openai>=1.0.0", "python-multipart", "aiofiles", "python-dotenv", "imaplib2", "email-validator", "pydantic>=1.10.0", "websockets", "asyncio-mqtt", "python-dateutil", "regex", "plotly>=5.0.0", "requests>=2.28.0", "httpx>=0.24.0" ]) .apt_install(["tesseract-ocr", "tesseract-ocr-eng", "poppler-utils"]) ) # Secrets for API keys and email credentials secrets = [ modal.Secret.from_name("anthropic-api-key"), # ANTHROPIC_API_KEY modal.Secret.from_name("sambanova-api-key"), # SAMBANOVA_API_KEY modal.Secret.from_name("email-credentials"), # EMAIL_USER, EMAIL_PASS, IMAP_SERVER ] # Shared volume for persistent storage volume = modal.Volume.from_name("spend-analyzer-data", create_if_missing=True) @app.function( image=image, secrets=secrets, volumes={"/data": volume}, timeout=300, memory=2048, cpu=2.0 ) def process_bank_statements(email_config: Dict, days_back: int = 30, passwords: Optional[Dict] = None): """ Modal function to process bank statements from email """ import sys sys.path.append("/data") from email_processor import EmailProcessor, PDFProcessor from spend_analyzer import SpendAnalyzer try: # Initialize processors email_processor = EmailProcessor(email_config) pdf_processor = PDFProcessor() analyzer = SpendAnalyzer() # Fetch emails emails = asyncio.run(email_processor.fetch_bank_emails(days_back)) all_transactions = [] processed_statements = [] for email_msg in emails: try: # Extract attachments attachments = asyncio.run(email_processor.extract_attachments(email_msg)) for filename, content, file_type in attachments: if file_type == 'pdf': # Try to process PDF password = None if passwords and filename in passwords: password = passwords[filename] try: statement_info = asyncio.run(pdf_processor.process_pdf(content, password)) all_transactions.extend(statement_info.transactions) processed_statements.append({ 'filename': filename, 'bank': statement_info.bank_name, 'account': statement_info.account_number, 'period': statement_info.statement_period, 'transaction_count': len(statement_info.transactions) }) except ValueError as e: if "password" in str(e).lower(): # PDF requires password processed_statements.append({ 'filename': filename, 'status': 'password_required', 'error': str(e) }) else: processed_statements.append({ 'filename': filename, 'status': 'error', 'error': str(e) }) except Exception as e: logging.error(f"Error processing email: {e}") continue # Analyze transactions if all_transactions: analyzer.load_transactions(all_transactions) analysis_data = analyzer.export_analysis_data() else: analysis_data = {'message': 'No transactions found'} return { 'processed_statements': processed_statements, 'total_transactions': len(all_transactions), 'analysis': analysis_data, 'timestamp': datetime.now().isoformat() } except Exception as e: logging.error(f"Error in process_bank_statements: {e}") return {'error': str(e)} @app.function( image=image, secrets=secrets, timeout=60 ) def analyze_uploaded_statements(pdf_contents: Dict[str, bytes], passwords: Optional[Dict] = None): """ Modal function to analyze directly uploaded PDF statements """ from pdf_processor import PDFProcessor from spend_analyzer import SpendAnalyzer try: pdf_processor = PDFProcessor() analyzer = SpendAnalyzer() all_transactions = [] processed_files = [] for filename, content in pdf_contents.items(): try: password = passwords.get(filename) if passwords else None statement_info = asyncio.run(pdf_processor.process_pdf(content, password)) all_transactions.extend(statement_info.transactions) processed_files.append({ 'filename': filename, 'bank': statement_info.bank_name, 'account': statement_info.account_number, 'transaction_count': len(statement_info.transactions), 'status': 'success' }) except Exception as e: processed_files.append({ 'filename': filename, 'status': 'error', 'error': str(e) }) # Analyze transactions if all_transactions: analyzer.load_transactions(all_transactions) analysis_data = analyzer.export_analysis_data() else: analysis_data = {'message': 'No transactions found'} return { 'processed_files': processed_files, 'total_transactions': len(all_transactions), 'analysis': analysis_data } except Exception as e: return {'error': str(e)} @app.function( image=image, secrets=secrets, volumes={"/data": volume}, timeout=30 ) def get_ai_analysis(analysis_data: Dict, user_question: str = "", provider: str = "claude"): """ Modal function to get AI analysis of spending data using Claude or SambaNova """ try: # Prepare context for AI context = f""" Financial Analysis Data: {json.dumps(analysis_data, indent=2, default=str)} User Question: {user_question if user_question else "Please provide a comprehensive analysis of my spending patterns and recommendations."} """ prompt = f""" You are a financial advisor analyzing bank statement data. Based on the provided financial data, give insights about: 1. Spending patterns and trends 2. Budget adherence and alerts 3. Unusual transactions that need attention 4. Specific recommendations for improvement 5. Answer to the user's specific question if provided Be specific, actionable, and highlight both positive aspects and areas for improvement. {context} """ if provider.lower() == "claude": return _get_claude_analysis(prompt) elif provider.lower() == "sambanova": return _get_sambanova_analysis(prompt) else: # Default to Claude return _get_claude_analysis(prompt) except Exception as e: return {'error': f"AI API error: {str(e)}"} def _get_claude_analysis(prompt: str) -> Dict: """Get analysis from Claude API""" try: import anthropic client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) response = client.messages.create( model="claude-3-sonnet-20240229", max_tokens=1500, messages=[ { "role": "user", "content": prompt } ] ) # Handle different response formats if hasattr(response.content[0], 'text'): analysis_text = response.content[0].text else: analysis_text = str(response.content[0]) return { 'ai_analysis': analysis_text, 'provider': 'claude', 'model': 'claude-3-sonnet-20240229', 'usage': { 'input_tokens': response.usage.input_tokens, 'output_tokens': response.usage.output_tokens, 'total_tokens': response.usage.input_tokens + response.usage.output_tokens } } except Exception as e: return {'error': f"Claude API error: {str(e)}"} def _get_sambanova_analysis(prompt: str) -> Dict: """Get analysis from SambaNova Cloud API""" try: import openai # SambaNova uses OpenAI-compatible API client = openai.OpenAI( api_key=os.environ["SAMBANOVA_API_KEY"], base_url="https://api.sambanova.ai/v1" ) response = client.chat.completions.create( model="Meta-Llama-3.1-8B-Instruct", # SambaNova model messages=[ { "role": "user", "content": prompt } ], max_tokens=1500, temperature=0.7 ) return { 'ai_analysis': response.choices[0].message.content, 'provider': 'sambanova', 'model': 'Meta-Llama-3.1-8B-Instruct', 'usage': { 'input_tokens': response.usage.prompt_tokens, 'output_tokens': response.usage.completion_tokens, 'total_tokens': response.usage.total_tokens } } except Exception as e: return {'error': f"SambaNova API error: {str(e)}"} @app.function( image=image, volumes={"/data": volume}, timeout=30 ) def save_user_data(user_id: str, data: Dict): """ Save user analysis data to persistent storage """ try: import json import os user_dir = f"/data/users/{user_id}" os.makedirs(user_dir, exist_ok=True) # Save analysis data with open(f"{user_dir}/analysis.json", "w") as f: json.dump(data, f, indent=2, default=str) # Save timestamp with open(f"{user_dir}/last_updated.txt", "w") as f: f.write(datetime.now().isoformat()) return {"status": "saved", "path": user_dir} except Exception as e: return {"error": str(e)} @app.function( image=image, volumes={"/data": volume}, timeout=30 ) def load_user_data(user_id: str): """ Load user analysis data from persistent storage """ try: import json user_dir = f"/data/users/{user_id}" analysis_file = f"{user_dir}/analysis.json" if os.path.exists(analysis_file): with open(analysis_file, "r") as f: data = json.load(f) # Get last updated time last_updated = None if os.path.exists(f"{user_dir}/last_updated.txt"): with open(f"{user_dir}/last_updated.txt", "r") as f: last_updated = f.read().strip() return { "data": data, "last_updated": last_updated, "status": "found" } else: return {"status": "not_found"} except Exception as e: return {"error": str(e)} # Webhook endpoint for MCP integration @app.function( image=image, secrets=secrets, volumes={"/data": volume} ) @modal.fastapi_endpoint(method="POST") def mcp_webhook(request_data: Dict): """ Webhook endpoint for MCP protocol messages """ try: from mcp_server import MCPServer # Initialize MCP server server = MCPServer() # Register tools async def process_statements_tool(args): email_config = args.get('email_config', {}) days_back = args.get('days_back', 30) passwords = args.get('passwords', {}) result = process_bank_statements.remote(email_config, days_back, passwords) return result async def analyze_pdf_tool(args): pdf_contents = args.get('pdf_contents', {}) passwords = args.get('passwords', {}) result = analyze_uploaded_statements.remote(pdf_contents, passwords) return result async def get_analysis_tool(args): analysis_data = args.get('analysis_data', {}) user_question = args.get('user_question', '') provider = args.get('provider', 'claude') result = get_ai_analysis.remote(analysis_data, user_question, provider) return result # Register tools with MCP server server.register_tool("process_email_statements", "Process bank statements from email", process_statements_tool) server.register_tool("analyze_pdf_statements", "Analyze uploaded PDF statements", analyze_pdf_tool) server.register_tool("get_ai_analysis", "Get AI financial analysis (Claude or SambaNova)", get_analysis_tool) # Handle MCP message response = asyncio.run(server.handle_message(request_data)) return response except Exception as e: return { "jsonrpc": "2.0", "id": request_data.get("id"), "error": { "code": -32603, "message": str(e) } } # CLI for local testing @app.local_entrypoint() def main(): """ Local entrypoint for testing Modal functions """ print("Testing Modal deployment...") # Test basic functionality test_data = { "spending_insights": [], "recommendations": ["Test recommendation"] } result = get_ai_analysis.remote(test_data, "What do you think about my spending?", "claude") print("AI analysis result:", result) if __name__ == "__main__": # For running locally modal.run(main)