Spend-Analyzer-MCP / mcp_server.py
Balamurugan Thayalan
spend-analyzer-mcp-mbt v1.0.0
ed1f7cd
raw
history blame
24.8 kB
"""
MCP Server for Spend Analysis - Core Protocol Implementation
"""
import json
import asyncio
import uvicorn
from fastapi import FastAPI, Request
from typing import Dict, List, Any, Optional, Callable
from dataclasses import dataclass
from enum import Enum
import logging
from spend_analyzer import SpendAnalyzer
# MCP Protocol Types
class MessageType(Enum):
REQUEST = "request"
RESPONSE = "response"
NOTIFICATION = "notification"
@dataclass
class MCPMessage:
jsonrpc: str = "2.0"
id: Optional[str] = None
method: Optional[str] = None
params: Optional[Dict] = None
result: Optional[Any] = None
error: Optional[Dict] = None
class MCPServer:
def __init__(self):
self.tools = {}
self.resources = {}
self.prompts = {}
self.logger = logging.getLogger(__name__)
def register_tool(self, name: str, description: str, handler, input_schema=None):
"""Register a tool that Claude can call"""
if input_schema is None:
input_schema = {
"type": "object",
"properties": {},
"required": []
}
self.tools[name] = {
"description": description,
"handler": handler,
"input_schema": input_schema
}
def register_resource(self, uri: str, name: str, description: str, handler):
"""Register a resource that provides data"""
self.resources[uri] = {
"name": name,
"description": description,
"handler": handler,
"mimeType": "application/json"
}
async def handle_message(self, message: Dict) -> Dict:
"""Handle incoming MCP messages"""
try:
method = message.get("method")
params = message.get("params", {})
msg_id = message.get("id")
if method == "initialize":
return self._handle_initialize(msg_id)
elif method == "tools/list":
return self._handle_list_tools(msg_id)
elif method == "tools/call":
return await self._handle_call_tool(msg_id, params)
elif method == "resources/list":
return self._handle_list_resources(msg_id)
elif method == "resources/read":
return await self._handle_read_resource(msg_id, params)
else:
return self._error_response(msg_id, -32601, f"Method not found: {method}")
except Exception as e:
self.logger.error(f"Error handling message: {e}")
return self._error_response(message.get("id"), -32603, str(e))
def _handle_initialize(self, msg_id: Optional[str]) -> Dict:
"""Handle MCP initialization"""
return {
"jsonrpc": "2.0",
"id": msg_id,
"result": {
"protocolVersion": "2024-11-05",
"capabilities": {
"tools": {},
"resources": {},
"prompts": {}
},
"serverInfo": {
"name": "spend-analyzer-mcp-bmt",
"version": "1.0.0"
}
}
}
def _handle_list_tools(self, msg_id: Optional[str]) -> Dict:
"""List available tools"""
tools_list = []
for name, tool in self.tools.items():
tools_list.append({
"name": name,
"description": tool["description"],
"inputSchema": tool["input_schema"]
})
return {
"jsonrpc": "2.0",
"id": msg_id,
"result": {"tools": tools_list}
}
async def _handle_call_tool(self, msg_id: Optional[str], params: Dict) -> Dict:
"""Execute a tool call"""
tool_name = params.get("name")
arguments = params.get("arguments", {})
if tool_name not in self.tools:
return self._error_response(msg_id, -32602, f"Tool not found: {tool_name}")
try:
handler = self.tools[tool_name]["handler"]
result = await handler(arguments)
return {
"jsonrpc": "2.0",
"id": msg_id,
"result": {
"content": [
{
"type": "text",
"text": json.dumps(result)
}
]
}
}
except Exception as e:
return self._error_response(msg_id, -32603, f"Tool execution failed: {str(e)}")
def _handle_list_resources(self, msg_id: Optional[str]) -> Dict:
"""List available resources"""
resources_list = []
for uri, resource in self.resources.items():
resources_list.append({
"uri": uri,
"name": resource["name"],
"description": resource["description"],
"mimeType": resource["mimeType"]
})
return {
"jsonrpc": "2.0",
"id": msg_id,
"result": {"resources": resources_list}
}
async def _handle_read_resource(self, msg_id: Optional[str], params: Dict) -> Dict:
"""Read a resource"""
uri = params.get("uri")
if uri not in self.resources:
return self._error_response(msg_id, -32602, f"Resource not found: {uri}")
try:
handler = self.resources[uri]["handler"]
content = await handler()
return {
"jsonrpc": "2.0",
"id": msg_id,
"result": {
"contents": [
{
"uri": uri,
"mimeType": "application/json",
"text": json.dumps(content, indent=2)
}
]
}
}
except Exception as e:
return self._error_response(msg_id, -32603, f"Resource read failed: {str(e)}")
def _error_response(self, msg_id: Optional[str], code: int, message: str) -> Dict:
"""Create error response"""
return {
"jsonrpc": "2.0",
"id": msg_id,
"error": {
"code": code,
"message": message
}
}
# Register all tools for the MCP server
def register_all_tools(server: MCPServer):
"""Register all tools with the MCP server"""
# Process email statements tool
async def process_email_statements_tool(args: Dict) -> Dict:
"""Process bank statements from email"""
from email_processor import EmailProcessor, PDFProcessor
email_config = args.get('email_config', {})
days_back = args.get('days_back', 30)
passwords = args.get('passwords', {})
try:
# Initialize processors
email_processor = EmailProcessor(email_config)
pdf_processor = PDFProcessor()
analyzer = SpendAnalyzer()
# Fetch emails
emails = await email_processor.fetch_bank_emails(days_back)
all_transactions = []
processed_statements = []
for email_msg in emails:
# Extract attachments
attachments = await email_processor.extract_attachments(email_msg)
for filename, content, file_type in attachments:
if file_type == 'pdf':
# Try to process PDF
password = passwords.get(filename)
try:
statement_info = await pdf_processor.process_pdf(content, password)
all_transactions.extend(statement_info.transactions)
processed_statements.append({
'filename': filename,
'bank': statement_info.bank_name,
'account': statement_info.account_number,
'transaction_count': len(statement_info.transactions)
})
except Exception as e:
processed_statements.append({
'filename': filename,
'status': 'error',
'error': str(e)
})
# Analyze transactions
if all_transactions:
analyzer.load_transactions(all_transactions)
analysis_data = analyzer.export_analysis_data()
else:
analysis_data = {'message': 'No transactions found'}
return {
'processed_statements': processed_statements,
'total_transactions': len(all_transactions),
'analysis': analysis_data
}
except Exception as e:
return {'error': str(e)}
# Analyze PDF statements tool
async def analyze_pdf_statements_tool(args: Dict) -> Dict:
"""Analyze uploaded PDF statements"""
from email_processor import PDFProcessor
pdf_contents = args.get('pdf_contents', {})
passwords = args.get('passwords', {})
try:
pdf_processor = PDFProcessor()
analyzer = SpendAnalyzer()
all_transactions = []
processed_files = []
for filename, content in pdf_contents.items():
try:
password = passwords.get(filename)
statement_info = await pdf_processor.process_pdf(content, password)
all_transactions.extend(statement_info.transactions)
processed_files.append({
'filename': filename,
'bank': statement_info.bank_name,
'account': statement_info.account_number,
'transaction_count': len(statement_info.transactions),
'status': 'success'
})
except Exception as e:
processed_files.append({
'filename': filename,
'status': 'error',
'error': str(e)
})
# Analyze transactions
if all_transactions:
analyzer.load_transactions(all_transactions)
analysis_data = analyzer.export_analysis_data()
else:
analysis_data = {'message': 'No transactions found'}
return {
'processed_files': processed_files,
'total_transactions': len(all_transactions),
'analysis': analysis_data
}
except Exception as e:
return {'error': str(e)}
# Get AI analysis tool
async def get_ai_analysis_tool(args: Dict) -> Dict:
"""Get AI financial analysis"""
import os
analysis_data = args.get('analysis_data', {})
user_question = args.get('user_question', '')
provider = args.get('provider', 'claude')
try:
# Prepare context for AI
context = f"""
Financial Analysis Data:
{json.dumps(analysis_data, indent=2, default=str)}
User Question: {user_question if user_question else "Please provide a comprehensive analysis of my spending patterns and recommendations."}
"""
prompt = f"""
You are a financial advisor analyzing bank statement data.
Based on the provided financial data, give insights about:
1. Spending patterns and trends
2. Budget adherence and alerts
3. Unusual transactions that need attention
4. Specific recommendations for improvement
5. Answer to the user's specific question if provided
Be specific, actionable, and highlight both positive aspects and areas for improvement.
{context}
"""
if provider.lower() == "claude":
# Call Claude API
try:
import anthropic
client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY", ""))
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1500,
messages=[
{
"role": "user",
"content": prompt
}
]
)
# Handle different response formats
try:
# Extract text from Claude response
if hasattr(response, 'content') and response.content:
content_item = response.content[0]
# Handle different Claude API versions
if isinstance(content_item, dict):
if 'text' in content_item:
analysis_text = content_item['text']
else:
analysis_text = str(content_item)
# Handle object with attributes
elif hasattr(content_item, '__dict__'):
content_dict = vars(content_item)
if 'text' in content_dict:
analysis_text = content_dict['text']
else:
analysis_text = str(content_item)
else:
analysis_text = str(content_item)
else:
analysis_text = str(response)
except Exception as e:
analysis_text = f"Error parsing Claude response: {str(e)}"
return {
'ai_analysis': analysis_text,
'provider': 'claude',
'model': 'claude-3-sonnet-20240229'
}
except Exception as e:
return {'error': f"Claude API error: {str(e)}"}
elif provider.lower() == "sambanova":
# Call SambaNova API
try:
import openai
# SambaNova uses OpenAI-compatible API
client = openai.OpenAI(
api_key=os.environ.get("SAMBANOVA_API_KEY", ""),
base_url="https://api.sambanova.ai/v1"
)
response = client.chat.completions.create(
model="Meta-Llama-3.1-8B-Instruct", # SambaNova model
messages=[
{
"role": "user",
"content": prompt
}
],
max_tokens=1500,
temperature=0.7
)
return {
'ai_analysis': response.choices[0].message.content,
'provider': 'sambanova',
'model': 'Meta-Llama-3.1-8B-Instruct'
}
except Exception as e:
return {'error': f"SambaNova API error: {str(e)}"}
else:
return {'error': f"Unsupported provider: {provider}"}
except Exception as e:
return {'error': f"AI API error: {str(e)}"}
# Register tools with proper input schemas
server.register_tool(
"process_email_statements",
"Process bank statements from email",
process_email_statements_tool,
input_schema={
"type": "object",
"properties": {
"email_config": {
"type": "object",
"properties": {
"email": {"type": "string"},
"password": {"type": "string"},
"imap_server": {"type": "string"}
},
"required": ["email", "password", "imap_server"]
},
"days_back": {"type": "integer", "default": 30},
"passwords": {
"type": "object",
"additionalProperties": {"type": "string"}
}
},
"required": ["email_config"]
}
)
server.register_tool(
"analyze_pdf_statements",
"Analyze uploaded PDF statements",
analyze_pdf_statements_tool,
input_schema={
"type": "object",
"properties": {
"pdf_contents": {
"type": "object",
"additionalProperties": {"type": "string", "format": "binary"}
},
"passwords": {
"type": "object",
"additionalProperties": {"type": "string"}
}
},
"required": ["pdf_contents"]
}
)
server.register_tool(
"get_ai_analysis",
"Get AI financial analysis (Claude or SambaNova)",
get_ai_analysis_tool,
input_schema={
"type": "object",
"properties": {
"analysis_data": {"type": "object"},
"user_question": {"type": "string"},
"provider": {
"type": "string",
"enum": ["claude", "sambanova"],
"default": "claude"
}
},
"required": ["analysis_data"]
}
)
# Register all resources for the MCP server
def register_all_resources(server: MCPServer):
"""Register all resources with the MCP server"""
# Spending insights resource
async def get_spending_insights_resource():
"""Resource handler for spending insights"""
from dataclasses import asdict
analyzer = SpendAnalyzer()
# Try to load sample data if available
try:
import os
import json
sample_path = os.path.join(os.path.dirname(__file__), "sample_data", "transactions.json")
if os.path.exists(sample_path):
with open(sample_path, 'r') as f:
transactions = json.load(f)
analyzer.load_transactions(transactions)
except Exception as e:
logging.warning(f"Could not load sample data: {e}")
# Return empty insights if no data
return []
# Convert SpendingInsight objects to dictionaries
insights = analyzer.analyze_spending_by_category()
return [asdict(insight) for insight in insights]
# Budget alerts resource
async def get_budget_alerts_resource():
"""Resource handler for budget alerts"""
from dataclasses import asdict
analyzer = SpendAnalyzer()
# Try to load sample data and budgets if available
try:
import os
import json
sample_path = os.path.join(os.path.dirname(__file__), "sample_data", "transactions.json")
budgets_path = os.path.join(os.path.dirname(__file__), "sample_data", "budgets.json")
if os.path.exists(sample_path) and os.path.exists(budgets_path):
with open(sample_path, 'r') as f:
transactions = json.load(f)
with open(budgets_path, 'r') as f:
budgets = json.load(f)
analyzer.load_transactions(transactions)
analyzer.set_budgets(budgets)
except Exception as e:
logging.warning(f"Could not load sample data: {e}")
# Return empty alerts if no data
return []
# Convert BudgetAlert objects to dictionaries
alerts = analyzer.check_budget_alerts()
return [asdict(alert) for alert in alerts]
# Financial summary resource
async def get_financial_summary_resource():
"""Resource handler for financial summary"""
from dataclasses import asdict
analyzer = SpendAnalyzer()
# Try to load sample data if available
try:
import os
import json
sample_path = os.path.join(os.path.dirname(__file__), "sample_data", "transactions.json")
if os.path.exists(sample_path):
with open(sample_path, 'r') as f:
transactions = json.load(f)
analyzer.load_transactions(transactions)
except Exception as e:
logging.warning(f"Could not load sample data: {e}")
# Return empty summary if no data
return {
"total_income": 0,
"total_expenses": 0,
"net_cash_flow": 0,
"largest_expense": {},
"most_frequent_category": "",
"unusual_transactions": [],
"monthly_trends": {}
}
# Convert FinancialSummary object to dictionary
summary = analyzer.generate_financial_summary()
return asdict(summary)
# Register resources
server.register_resource(
uri="spending-insights",
name="Spending Insights",
description="Current spending insights by category",
handler=get_spending_insights_resource
)
server.register_resource(
uri="budget-alerts",
name="Budget Alerts",
description="Current budget alerts and overspending warnings",
handler=get_budget_alerts_resource
)
server.register_resource(
uri="financial-summary",
name="Financial Summary",
description="Comprehensive financial summary and analysis",
handler=get_financial_summary_resource
)
# Create FastAPI app for MCP server
def create_mcp_app():
"""Create a FastAPI app for the MCP server"""
app = FastAPI(title="Spend Analyzer MCP Server")
server = MCPServer()
# Register tools and resources
register_all_tools(server)
register_all_resources(server)
@app.post("/mcp")
async def handle_mcp_request(request: Request):
"""Handle MCP protocol requests"""
try:
data = await request.json()
return await server.handle_message(data)
except Exception as e:
return {
"jsonrpc": "2.0",
"id": None,
"error": {
"code": -32700,
"message": f"Parse error: {str(e)}"
}
}
@app.get("/")
async def root():
"""Root endpoint with server info"""
return {
"name": "Spend Analyzer MCP Server",
"version": "1.0.0",
"description": "MCP server for financial analysis",
"endpoints": {
"/mcp": "MCP protocol endpoint",
"/docs": "API documentation"
}
}
return app
# Run standalone MCP server
def run_mcp_server(host='0.0.0.0', port=8000):
"""Run a standalone MCP server"""
app = create_mcp_app()
uvicorn.run(app, host=host, port=port)
# Example usage and testing
if __name__ == "__main__":
# Run the standalone MCP server
print("Starting Spend Analyzer MCP Server...")
print("MCP endpoint will be available at: http://localhost:8000/mcp")
print("API documentation will be available at: http://localhost:8000/docs")
run_mcp_server()