Spend-Analyzer-MCP / modal_deployment.py
Balamurugan Thayalan
Initial Commit
499796e
raw
history blame
12.9 kB
"""
Modal.com Deployment Configuration for Spend Analyzer MCP
"""
import modal
import os
from typing import Dict, Any, Optional
import json
import asyncio
from datetime import datetime
import logging
# Create Modal app
app = modal.App("spend-analyzer-mcp")
# Define the container image with all dependencies
image = (
modal.Image.debian_slim(python_version="3.11")
.pip_install([
"fastapi",
"uvicorn",
"gradio",
"pandas",
"numpy",
"PyPDF2",
"PyMuPDF",
"anthropic",
"python-multipart",
"aiofiles",
"python-dotenv",
"imaplib2",
"email-validator",
"pydantic",
"websockets",
"asyncio-mqtt"
])
.apt_install(["tesseract-ocr", "tesseract-ocr-eng"])
)
# Secrets for API keys and email credentials
secrets = [
modal.Secret.from_name("anthropic-api-key"), # ANTHROPIC_API_KEY
modal.Secret.from_name("email-credentials"), # EMAIL_USER, EMAIL_PASS, IMAP_SERVER
]
# Shared volume for persistent storage
volume = modal.Volume.from_name("spend-analyzer-data", create_if_missing=True)
@app.function(
image=image,
secrets=secrets,
volumes={"/data": volume},
timeout=300,
memory=2048,
cpu=2.0
)
def process_bank_statements(email_config: Dict, days_back: int = 30, passwords: Optional[Dict] = None):
"""
Modal function to process bank statements from email
"""
import sys
sys.path.append("/data")
from email_processor import EmailProcessor, PDFProcessor
from spend_analyzer import SpendAnalyzer
try:
# Initialize processors
email_processor = EmailProcessor(email_config)
pdf_processor = PDFProcessor()
analyzer = SpendAnalyzer()
# Fetch emails
emails = asyncio.run(email_processor.fetch_bank_emails(days_back))
all_transactions = []
processed_statements = []
for email_msg in emails:
try:
# Extract attachments
attachments = asyncio.run(email_processor.extract_attachments(email_msg))
for filename, content, file_type in attachments:
if file_type == 'pdf':
# Try to process PDF
password = None
if passwords and filename in passwords:
password = passwords[filename]
try:
statement_info = asyncio.run(pdf_processor.process_pdf(content, password))
all_transactions.extend(statement_info.transactions)
processed_statements.append({
'filename': filename,
'bank': statement_info.bank_name,
'account': statement_info.account_number,
'period': statement_info.statement_period,
'transaction_count': len(statement_info.transactions)
})
except ValueError as e:
if "password" in str(e).lower():
# PDF requires password
processed_statements.append({
'filename': filename,
'status': 'password_required',
'error': str(e)
})
else:
processed_statements.append({
'filename': filename,
'status': 'error',
'error': str(e)
})
except Exception as e:
logging.error(f"Error processing email: {e}")
continue
# Analyze transactions
if all_transactions:
analyzer.load_transactions(all_transactions)
analysis_data = analyzer.export_analysis_data()
else:
analysis_data = {'message': 'No transactions found'}
return {
'processed_statements': processed_statements,
'total_transactions': len(all_transactions),
'analysis': analysis_data,
'timestamp': datetime.now().isoformat()
}
except Exception as e:
logging.error(f"Error in process_bank_statements: {e}")
return {'error': str(e)}
@app.function(
image=image,
secrets=secrets,
timeout=60
)
def analyze_uploaded_statements(pdf_contents: Dict[str, bytes], passwords: Optional[Dict] = None):
"""
Modal function to analyze directly uploaded PDF statements
"""
from pdf_processor import PDFProcessor
from spend_analyzer import SpendAnalyzer
try:
pdf_processor = PDFProcessor()
analyzer = SpendAnalyzer()
all_transactions = []
processed_files = []
for filename, content in pdf_contents.items():
try:
password = passwords.get(filename) if passwords else None
statement_info = asyncio.run(pdf_processor.process_pdf(content, password))
all_transactions.extend(statement_info.transactions)
processed_files.append({
'filename': filename,
'bank': statement_info.bank_name,
'account': statement_info.account_number,
'transaction_count': len(statement_info.transactions),
'status': 'success'
})
except Exception as e:
processed_files.append({
'filename': filename,
'status': 'error',
'error': str(e)
})
# Analyze transactions
if all_transactions:
analyzer.load_transactions(all_transactions)
analysis_data = analyzer.export_analysis_data()
else:
analysis_data = {'message': 'No transactions found'}
return {
'processed_files': processed_files,
'total_transactions': len(all_transactions),
'analysis': analysis_data
}
except Exception as e:
return {'error': str(e)}
@app.function(
image=image,
secrets=secrets,
volumes={"/data": volume},
timeout=30
)
def get_claude_analysis(analysis_data: Dict, user_question: str = ""):
"""
Modal function to get Claude's analysis of spending data
"""
import anthropic
try:
client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
# Prepare context for Claude
context = f"""
Financial Analysis Data:
{json.dumps(analysis_data, indent=2, default=str)}
User Question: {user_question if user_question else "Please provide a comprehensive analysis of my spending patterns and recommendations."}
"""
response = client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1500,
messages=[
{
"role": "user",
"content": f"""
You are a financial advisor analyzing bank statement data.
Based on the provided financial data, give insights about:
1. Spending patterns and trends
2. Budget adherence and alerts
3. Unusual transactions that need attention
4. Specific recommendations for improvement
5. Answer to the user's specific question if provided
Be specific, actionable, and highlight both positive aspects and areas for improvement.
{context}
"""
}
]
)
return {
'claude_analysis': response.content[0].text,
'usage': response.usage.input_tokens + response.usage.output_tokens
}
except Exception as e:
return {'error': f"Claude API error: {str(e)}"}
@app.function(
image=image,
volumes={"/data": volume},
timeout=30
)
def save_user_data(user_id: str, data: Dict):
"""
Save user analysis data to persistent storage
"""
try:
import json
import os
user_dir = f"/data/users/{user_id}"
os.makedirs(user_dir, exist_ok=True)
# Save analysis data
with open(f"{user_dir}/analysis.json", "w") as f:
json.dump(data, f, indent=2, default=str)
# Save timestamp
with open(f"{user_dir}/last_updated.txt", "w") as f:
f.write(datetime.now().isoformat())
return {"status": "saved", "path": user_dir}
except Exception as e:
return {"error": str(e)}
@app.function(
image=image,
volumes={"/data": volume},
timeout=30
)
def load_user_data(user_id: str):
"""
Load user analysis data from persistent storage
"""
try:
import json
user_dir = f"/data/users/{user_id}"
analysis_file = f"{user_dir}/analysis.json"
if os.path.exists(analysis_file):
with open(analysis_file, "r") as f:
data = json.load(f)
# Get last updated time
last_updated = None
if os.path.exists(f"{user_dir}/last_updated.txt"):
with open(f"{user_dir}/last_updated.txt", "r") as f:
last_updated = f.read().strip()
return {
"data": data,
"last_updated": last_updated,
"status": "found"
}
else:
return {"status": "not_found"}
except Exception as e:
return {"error": str(e)}
# Webhook endpoint for MCP integration
@app.function(
image=image,
secrets=secrets,
volumes={"/data": volume}
)
@modal.web_endpoint(method="POST")
def mcp_webhook(request_data: Dict):
"""
Webhook endpoint for MCP protocol messages
"""
try:
from mcp_server import MCPServer
# Initialize MCP server
server = MCPServer()
# Register tools
async def process_statements_tool(args):
email_config = args.get('email_config', {})
days_back = args.get('days_back', 30)
passwords = args.get('passwords', {})
result = process_bank_statements.remote(email_config, days_back, passwords)
return result
async def analyze_pdf_tool(args):
pdf_contents = args.get('pdf_contents', {})
passwords = args.get('passwords', {})
result = analyze_uploaded_statements.remote(pdf_contents, passwords)
return result
async def get_analysis_tool(args):
analysis_data = args.get('analysis_data', {})
user_question = args.get('user_question', '')
result = get_claude_analysis.remote(analysis_data, user_question)
return result
# Register tools with MCP server
server.register_tool("process_email_statements", "Process bank statements from email", process_statements_tool)
server.register_tool("analyze_pdf_statements", "Analyze uploaded PDF statements", analyze_pdf_tool)
server.register_tool("get_claude_analysis", "Get Claude's financial analysis", get_analysis_tool)
# Handle MCP message
response = asyncio.run(server.handle_message(request_data))
return response
except Exception as e:
return {
"jsonrpc": "2.0",
"id": request_data.get("id"),
"error": {
"code": -32603,
"message": str(e)
}
}
# CLI for local testing
@app.local_entrypoint()
def main():
"""
Local entrypoint for testing Modal functions
"""
print("Testing Modal deployment...")
# Test basic functionality
test_data = {
"spending_insights": [],
"recommendations": ["Test recommendation"]
}
result = get_claude_analysis.remote(test_data, "What do you think about my spending?")
print("Claude analysis result:", result)
if __name__ == "__main__":
# For running locally
modal.run(main)