File size: 86,548 Bytes
ed1f7cd 5794ea1 ed1f7cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 |
"""
Gradio Web Interface for Spend Analyzer MCP - Real PDF Processing
"""
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import json
import os
import asyncio
import requests
from typing import Dict, List, Optional, Tuple
from datetime import datetime, timedelta
import logging
import time
import tempfile
import threading
# Import our local modules
from email_processor import PDFProcessor
from spend_analyzer import SpendAnalyzer
from secure_storage_utils import SecureStorageManager
from mcp_server import create_mcp_app, run_mcp_server
class RealSpendAnalyzerInterface:
def __init__(self):
self.current_analysis = None
self.user_sessions = {}
self.detected_currency = "$" # Default currency
self.currency_symbol = "$" # Current currency symbol
self.logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
# Initialize processors
self.pdf_processor = PDFProcessor()
self.spend_analyzer = SpendAnalyzer()
self.secure_storage = SecureStorageManager()
# MCP server state
self.mcp_server_thread = None
self.mcp_server_running = False
self.mcp_server_logs = []
# Load API keys from environment or config file on startup
self._load_initial_api_settings()
# Currency detection patterns
self.currency_patterns = {
'USD': {'symbols': ['$', 'USD', 'US$'], 'regex': r'\$|USD|US\$'},
'INR': {'symbols': ['₹', 'Rs', 'Rs.', 'INR'], 'regex': r'₹|Rs\.?|INR'},
'EUR': {'symbols': ['€', 'EUR'], 'regex': r'€|EUR'},
'GBP': {'symbols': ['£', 'GBP'], 'regex': r'£|GBP'},
'CAD': {'symbols': ['C$', 'CAD'], 'regex': r'C\$|CAD'},
'AUD': {'symbols': ['A$', 'AUD'], 'regex': r'A\$|AUD'},
'JPY': {'symbols': ['¥', 'JPY'], 'regex': r'¥|JPY'},
'CNY': {'symbols': ['¥', 'CNY', 'RMB'], 'regex': r'CNY|RMB'},
}
def create_interface(self):
"""Create the main Gradio interface"""
with gr.Blocks(
title="Spend Analyzer MCP - Real PDF Processing",
css="""
.main-header { text-align: center; margin: 20px 0; }
.status-box { padding: 10px; border-radius: 5px; margin: 10px 0; }
.success-box { background-color: #d4edda; border: 1px solid #c3e6cb; }
.error-box { background-color: #f8d7da; border: 1px solid #f5c6cb; }
.warning-box { background-color: #fff3cd; border: 1px solid #ffeaa7; }
.info-box { background-color: #e7f3ff; border: 1px solid #b3d9ff; }
"""
) as interface:
gr.Markdown("# 💰 Spend Analyzer MCP - Real PDF Processing", elem_classes=["main-header"])
gr.Markdown("*Analyze your real bank statement PDFs with AI-powered insights*")
# Info notice
gr.HTML('<div class="info-box">📄 <strong>Real PDF Processing:</strong> Upload your actual bank statement PDFs for comprehensive financial analysis.</div>')
with gr.Tabs():
# Tab 1: PDF Upload & Processing
with gr.TabItem("📄 PDF Upload & Analysis"):
self._create_pdf_processing_tab()
# Tab 2: Analysis Dashboard
with gr.TabItem("📊 Analysis Dashboard"):
self._create_dashboard_tab()
# Tab 3: AI Financial Advisor
with gr.TabItem("🤖 AI Financial Advisor"):
self._create_chat_tab()
# Tab 4: Transaction Management
with gr.TabItem("📋 Transaction Management"):
self._create_transaction_tab()
# Tab 5: Settings & Export
with gr.TabItem("⚙️ Settings & Export"):
self._create_settings_tab()
# Tab 6: MCP Server
with gr.TabItem("🔌 MCP Server"):
self._create_mcp_tab()
# AI Analysis Disclaimer
gr.HTML('''
<div class="warning-box" style="margin-top: 20px; text-align: center;">
⚠️ <strong>Important Notice:</strong> AI analysis results are generated automatically and may contain errors.
Please verify all financial insights and recommendations for accuracy before making any financial decisions.
</div>
''')
return interface
def detect_currency_from_text(self, text: str) -> Tuple[str, str]:
"""Detect currency from PDF text content"""
import re
text_lower = text.lower()
# Check for currency patterns in order of specificity
for currency_code, currency_info in self.currency_patterns.items():
pattern = currency_info['regex']
if re.search(pattern, text, re.IGNORECASE):
# Return currency code and primary symbol
return currency_code, currency_info['symbols'][0]
# Default fallback based on bank detection
if any(bank in text_lower for bank in ['hdfc', 'icici', 'sbi', 'axis', 'kotak']):
return 'INR', '₹'
elif any(bank in text_lower for bank in ['chase', 'bofa', 'wells', 'citi']):
return 'USD', '$'
elif any(bank in text_lower for bank in ['hsbc', 'barclays', 'lloyds']):
return 'GBP', '£'
# Default to USD
return 'USD', '$'
def update_currency_in_interface(self, currency_code: str, currency_symbol: str):
"""Update currency throughout the interface"""
self.detected_currency = currency_code
self.currency_symbol = currency_symbol
self.logger.info(f"Currency detected: {currency_code} ({currency_symbol})")
def format_amount(self, amount: float) -> str:
"""Format amount with detected currency"""
return f"{self.currency_symbol}{amount:,.2f}"
def _create_pdf_processing_tab(self):
"""Create PDF processing tab"""
gr.Markdown("## 📄 Upload & Process Bank Statement PDFs")
gr.Markdown("*Upload your bank statement PDFs for real financial analysis*")
with gr.Row():
with gr.Column(scale=2):
# File upload section
gr.Markdown("### 📁 File Upload")
pdf_upload = gr.File(
label="Upload Bank Statement PDFs",
file_count="multiple",
file_types=[".pdf"],
height=150
)
# Password section
gr.Markdown("### 🔐 PDF Passwords (if needed)")
pdf_passwords_input = gr.Textbox(
label="PDF Passwords (JSON format)",
placeholder='{"statement1.pdf": "password123", "statement2.pdf": "password456"}',
lines=3
)
# Processing options
gr.Markdown("### ⚙️ Processing Options")
with gr.Row():
auto_categorize = gr.Checkbox(
label="Auto-categorize transactions",
value=True
)
detect_duplicates = gr.Checkbox(
label="Detect duplicate transactions",
value=True
)
# Process button
process_pdf_btn = gr.Button("🚀 Process PDFs", variant="primary", size="lg")
with gr.Column(scale=1):
# Status and results
processing_status = gr.HTML()
# Processing progress
gr.Markdown("### 📊 Processing Results")
processing_results = gr.JSON(
label="Detailed Results",
visible=False
)
# Quick stats
quick_stats = gr.HTML()
# Event handler
process_pdf_btn.click(
fn=self._process_real_pdfs,
inputs=[pdf_upload, pdf_passwords_input, auto_categorize, detect_duplicates],
outputs=[processing_status, processing_results, quick_stats]
)
def _create_dashboard_tab(self):
"""Create analysis dashboard tab"""
gr.Markdown("## 📊 Financial Analysis Dashboard")
with gr.Row():
refresh_btn = gr.Button("🔄 Refresh Dashboard")
export_btn = gr.Button("📤 Export Analysis")
clear_btn = gr.Button("🗑️ Clear Data", variant="stop")
# Summary cards
gr.Markdown("### 💰 Financial Summary")
with gr.Row():
total_income = gr.Number(label="Total Income ($)", interactive=False)
total_expenses = gr.Number(label="Total Expenses ($)", interactive=False)
net_cashflow = gr.Number(label="Net Cash Flow ($)", interactive=False)
transaction_count = gr.Number(label="Total Transactions", interactive=False)
# Charts section
gr.Markdown("### 📈 Visual Analysis")
with gr.Row():
with gr.Column():
spending_by_category = gr.Plot(label="Spending by Category")
monthly_trends = gr.Plot(label="Monthly Spending Trends")
with gr.Column():
income_vs_expenses = gr.Plot(label="Income vs Expenses")
top_merchants = gr.Plot(label="Top Merchants")
# Insights section
gr.Markdown("### 🎯 Financial Insights")
with gr.Row():
with gr.Column():
budget_alerts = gr.HTML(label="Budget Alerts")
spending_insights = gr.HTML(label="Spending Insights")
with gr.Column():
recommendations = gr.HTML(label="AI Recommendations")
unusual_transactions = gr.HTML(label="Unusual Transactions")
# Detailed data
with gr.Accordion("📋 Detailed Transaction Data", open=False):
transaction_table = gr.Dataframe(
headers=["Date", "Description", "Amount", "Category", "Account"],
interactive=True,
label="All Transactions"
)
# Status displays for clear function
clear_status = gr.HTML()
clear_info = gr.HTML()
# Event handlers
refresh_btn.click(
fn=self._refresh_dashboard,
outputs=[total_income, total_expenses, net_cashflow, transaction_count,
spending_by_category, monthly_trends, income_vs_expenses, top_merchants,
budget_alerts, spending_insights, recommendations, unusual_transactions,
transaction_table]
)
export_btn.click(
fn=self._export_analysis,
outputs=[gr.File(label="Analysis Export")]
)
clear_btn.click(
fn=self._clear_data,
outputs=[clear_status, clear_info]
)
def _create_chat_tab(self):
"""Create AI chat tab"""
gr.Markdown("## 🤖 AI Financial Advisor")
gr.Markdown("*Get personalized insights about your spending patterns using configured AI*")
with gr.Row():
with gr.Column(scale=3):
# AI Provider Selection
gr.Markdown("### 🤖 Select AI Provider")
with gr.Row():
ai_provider_selector = gr.Dropdown(
choices=["No AI Configured"],
label="Available AI Providers",
value="No AI Configured",
scale=3
)
refresh_ai_btn = gr.Button("🔄 Refresh", size="sm", scale=1)
fetch_models_btn = gr.Button("📥 Fetch Models", size="sm", scale=1, visible=False)
# Model selection for LM Studio
lm_studio_models = gr.Dropdown(
choices=[],
label="Available LM Studio Models",
visible=False
)
# Chat interface
chatbot = gr.Chatbot(
label="Financial Advisor Chat",
height=400,
show_label=True
)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Ask about your spending patterns, budgets, or financial goals...",
label="Your Question",
scale=4
)
send_btn = gr.Button("Send", variant="primary", scale=1)
# Quick question buttons
gr.Markdown("### 🎯 Quick Questions")
with gr.Row():
budget_btn = gr.Button("💰 Budget Analysis", size="sm")
trends_btn = gr.Button("📈 Spending Trends", size="sm")
tips_btn = gr.Button("💡 Save Money Tips", size="sm")
unusual_btn = gr.Button("🚨 Unusual Activity", size="sm")
with gr.Row():
categories_btn = gr.Button("📊 Category Breakdown", size="sm")
merchants_btn = gr.Button("🏪 Top Merchants", size="sm")
monthly_btn = gr.Button("📅 Monthly Analysis", size="sm")
goals_btn = gr.Button("🎯 Financial Goals", size="sm")
with gr.Column(scale=1):
chat_status = gr.HTML()
# AI Status
gr.Markdown("### 🤖 AI Status")
ai_status_display = gr.HTML(
value='<div class="warning-box">⚠️ No AI configured. Please configure AI in Settings.</div>'
)
# Analysis context
gr.Markdown("### 📊 Analysis Context")
context_info = gr.JSON(
label="Available Data",
value={"status": "Upload PDFs to start analysis"}
)
# Chat settings
gr.Markdown("### ⚙️ Chat Settings")
response_style = gr.Radio(
choices=["Detailed", "Concise", "Technical"],
label="Response Style",
value="Detailed"
)
# Event handlers
send_btn.click(
fn=self._handle_chat_message,
inputs=[msg_input, chatbot, response_style, ai_provider_selector],
outputs=[chatbot, msg_input, chat_status]
)
msg_input.submit(
fn=self._handle_chat_message,
inputs=[msg_input, chatbot, response_style, ai_provider_selector],
outputs=[chatbot, msg_input, chat_status]
)
refresh_ai_btn.click(
fn=self._refresh_ai_providers,
outputs=[ai_provider_selector, ai_status_display, fetch_models_btn, lm_studio_models]
)
fetch_models_btn.click(
fn=self._fetch_lm_studio_models,
inputs=[ai_provider_selector],
outputs=[lm_studio_models, chat_status]
)
ai_provider_selector.change(
fn=self._on_ai_provider_change,
inputs=[ai_provider_selector],
outputs=[fetch_models_btn, lm_studio_models, ai_status_display]
)
# Quick question handlers
budget_btn.click(lambda: "How am I doing with my budget this month?", outputs=[msg_input])
trends_btn.click(lambda: "What are my spending trends over the last few months?", outputs=[msg_input])
tips_btn.click(lambda: "What are specific ways I can save money based on my spending?", outputs=[msg_input])
unusual_btn.click(lambda: "Are there any unusual transactions I should be aware of?", outputs=[msg_input])
categories_btn.click(lambda: "Break down my spending by category", outputs=[msg_input])
merchants_btn.click(lambda: "Who are my top merchants and how much do I spend with them?", outputs=[msg_input])
monthly_btn.click(lambda: "Analyze my monthly spending patterns", outputs=[msg_input])
goals_btn.click(lambda: "Help me set realistic financial goals based on my spending", outputs=[msg_input])
def _create_transaction_tab(self):
"""Create transaction management tab"""
gr.Markdown("## 📋 Transaction Management")
gr.Markdown("*Review, edit, and categorize your transactions*")
with gr.Row():
with gr.Column(scale=2):
# Transaction filters
gr.Markdown("### 🔍 Filter Transactions")
with gr.Row():
date_from = gr.Textbox(label="From Date (YYYY-MM-DD)", placeholder="2024-01-01")
date_to = gr.Textbox(label="To Date (YYYY-MM-DD)", placeholder="2024-12-31")
with gr.Row():
category_filter = gr.Dropdown(
choices=["All", "Food & Dining", "Shopping", "Gas & Transport",
"Utilities", "Entertainment", "Healthcare", "Other"],
label="Category Filter",
value="All"
)
amount_filter = gr.Radio(
choices=["All", "Income Only", "Expenses Only", "> $100", "> $500"],
label="Amount Filter",
value="All"
)
filter_btn = gr.Button("🔍 Apply Filters", variant="secondary")
# Transaction editing
gr.Markdown("### ✏️ Edit Transaction")
with gr.Row():
edit_transaction_id = gr.Number(label="Transaction ID", precision=0)
edit_category = gr.Dropdown(
choices=["Food & Dining", "Shopping", "Gas & Transport",
"Utilities", "Entertainment", "Healthcare", "Other"],
label="New Category"
)
update_btn = gr.Button("💾 Update Transaction", variant="primary")
with gr.Column(scale=1):
# Transaction stats
gr.Markdown("### 📊 Transaction Statistics")
transaction_stats = gr.HTML()
# Category management
gr.Markdown("### 🏷️ Category Management")
add_category = gr.Textbox(label="Add New Category")
add_category_btn = gr.Button("➕ Add Category")
category_status = gr.HTML()
# Filtered transactions table
filtered_transactions = gr.Dataframe(
headers=["ID", "Date", "Description", "Amount", "Category", "Account"],
interactive=False,
label="Filtered Transactions"
)
# Event handlers
filter_btn.click(
fn=self._filter_transactions,
inputs=[date_from, date_to, category_filter, amount_filter],
outputs=[filtered_transactions, transaction_stats]
)
update_btn.click(
fn=self._update_transaction,
inputs=[edit_transaction_id, edit_category],
outputs=[category_status, filtered_transactions]
)
add_category_btn.click(
fn=self._add_category,
inputs=[add_category],
outputs=[category_status, edit_category, category_filter]
)
def _create_settings_tab(self):
"""Create settings and export tab"""
gr.Markdown("## ⚙️ Settings & Export")
with gr.Tabs():
with gr.TabItem("AI API Configuration"):
gr.Markdown("### 🤖 AI API Settings")
gr.Markdown("*Configure AI providers for enhanced analysis and insights*")
# Add simple warning about API key persistence
gr.HTML(self.secure_storage.create_simple_warning_html())
with gr.Row():
with gr.Column():
# AI Provider Selection
ai_provider = gr.Radio(
choices=["Claude (Anthropic)", "SambaNova", "LM Studio", "Ollama", "Custom API"],
label="AI Provider",
value="Claude (Anthropic)"
)
# API Configuration based on provider
with gr.Group():
gr.Markdown("#### API Configuration")
# Claude/Anthropic Settings
claude_api_key = gr.Textbox(
label="Claude API Key",
type="password",
placeholder="sk-ant-...",
visible=True
)
claude_model = gr.Dropdown(
choices=["claude-3-5-sonnet-20241022", "claude-3-5-haiku-20241022", "claude-3-opus-20240229"],
label="Claude Model",
value="claude-3-5-sonnet-20241022",
visible=True
)
# SambaNova Settings
sambanova_api_key = gr.Textbox(
label="SambaNova API Key",
type="password",
placeholder="Your SambaNova API key",
visible=False
)
sambanova_model = gr.Dropdown(
choices=["Meta-Llama-3.1-8B-Instruct", "Meta-Llama-3.1-70B-Instruct", "Meta-Llama-3.1-405B-Instruct"],
label="SambaNova Model",
value="Meta-Llama-3.1-70B-Instruct",
visible=False
)
# LM Studio Settings
lm_studio_url = gr.Textbox(
label="LM Studio URL",
placeholder="http://localhost:1234/v1",
value="http://localhost:1234/v1",
visible=False
)
lm_studio_model = gr.Textbox(
label="LM Studio Model Name",
placeholder="local-model",
visible=False
)
# Ollama Settings
ollama_url = gr.Textbox(
label="Ollama URL",
placeholder="http://localhost:11434",
value="http://localhost:11434",
visible=False
)
ollama_model = gr.Dropdown(
choices=["llama3.1", "llama3.1:70b", "mistral", "codellama", "phi3"],
label="Ollama Model",
value="llama3.1",
visible=False
)
# Custom API Settings
custom_api_url = gr.Textbox(
label="Custom API URL",
placeholder="https://api.example.com/v1",
visible=False
)
custom_api_key = gr.Textbox(
label="Custom API Key",
type="password",
placeholder="Your custom API key",
visible=False
)
custom_model_list = gr.Textbox(
label="Available Models (comma-separated)",
placeholder="model1, model2, model3",
visible=False
)
custom_selected_model = gr.Textbox(
label="Selected Model",
placeholder="model1",
visible=False
)
# AI Settings
with gr.Group():
gr.Markdown("#### AI Analysis Settings")
ai_temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature (Creativity)"
)
ai_max_tokens = gr.Slider(
minimum=100,
maximum=4000,
value=1000,
step=100,
label="Max Tokens"
)
enable_ai_insights = gr.Checkbox(
label="Enable AI-powered insights",
value=True
)
enable_ai_recommendations = gr.Checkbox(
label="Enable AI recommendations",
value=True
)
save_ai_settings_btn = gr.Button("💾 Save AI Settings", variant="primary")
with gr.Column():
ai_settings_status = gr.HTML()
# Test AI Connection
gr.Markdown("#### 🔍 Test AI Connection")
test_ai_btn = gr.Button("🧪 Test AI Connection", variant="secondary")
ai_test_result = gr.HTML()
# Current AI Settings Display
gr.Markdown("#### 📋 Current AI Configuration")
current_ai_settings = gr.JSON(
label="Active AI Settings",
value={"provider": "None", "status": "Not configured"}
)
# AI Usage Statistics
gr.Markdown("#### 📊 AI Usage Statistics")
ai_usage_stats = gr.HTML(
value='<div class="info-box">No usage data available</div>'
)
with gr.TabItem("Budget Settings"):
gr.Markdown("### 💰 Monthly Budget Configuration")
with gr.Row():
with gr.Column():
budget_categories = gr.CheckboxGroup(
choices=["Food & Dining", "Shopping", "Gas & Transport",
"Utilities", "Entertainment", "Healthcare", "Other"],
label="Categories to Budget",
value=["Food & Dining", "Shopping", "Gas & Transport"]
)
budget_amounts = gr.JSON(
label="Budget Amounts ($)",
value={
"Food & Dining": 500,
"Shopping": 300,
"Gas & Transport": 200,
"Utilities": 150,
"Entertainment": 100,
"Healthcare": 200,
"Other": 100
}
)
save_budgets_btn = gr.Button("💾 Save Budget Settings", variant="primary")
with gr.Column():
budget_status = gr.HTML()
current_budgets = gr.JSON(label="Current Budget Settings")
with gr.TabItem("Export Options"):
gr.Markdown("### 📤 Data Export")
with gr.Row():
with gr.Column():
export_format = gr.Radio(
choices=["JSON", "CSV", "Excel"],
label="Export Format",
value="CSV"
)
export_options = gr.CheckboxGroup(
choices=["Raw Transactions", "Analysis Summary", "Charts Data", "Recommendations"],
label="Include in Export",
value=["Raw Transactions", "Analysis Summary"]
)
date_range_export = gr.CheckboxGroup(
choices=["Last 30 days", "Last 90 days", "Last 6 months", "All data"],
label="Date Range",
value=["All data"]
)
export_data_btn = gr.Button("📤 Export Data", variant="primary")
with gr.Column():
export_status = gr.HTML()
gr.Markdown("### 📊 Export Preview")
export_preview = gr.JSON(label="Export Preview")
with gr.TabItem("Processing Settings"):
gr.Markdown("### ⚙️ PDF Processing Configuration")
processing_settings = gr.JSON(
label="Processing Settings",
value={
"auto_categorize": True,
"detect_duplicates": True,
"merge_similar_transactions": False,
"confidence_threshold": 0.8,
"date_format": "auto",
"amount_format": "auto"
}
)
save_processing_btn = gr.Button("💾 Save Processing Settings", variant="primary")
processing_status = gr.HTML()
# Event handlers
save_budgets_btn.click(
fn=self._save_budget_settings,
inputs=[budget_categories, budget_amounts],
outputs=[budget_status, current_budgets]
)
export_data_btn.click(
fn=self._export_data,
inputs=[export_format, export_options, date_range_export],
outputs=[export_status, export_preview, gr.File(label="Export File")]
)
save_processing_btn.click(
fn=self._save_processing_settings,
inputs=[processing_settings],
outputs=[processing_status]
)
# AI Configuration Event Handlers
def update_ai_provider_visibility(provider):
"""Update visibility of AI provider-specific fields"""
claude_visible = provider == "Claude (Anthropic)"
sambanova_visible = provider == "SambaNova"
lm_studio_visible = provider == "LM Studio"
ollama_visible = provider == "Ollama"
custom_visible = provider == "Custom API"
return (
gr.update(visible=claude_visible), # claude_api_key
gr.update(visible=claude_visible), # claude_model
gr.update(visible=sambanova_visible), # sambanova_api_key
gr.update(visible=sambanova_visible), # sambanova_model
gr.update(visible=lm_studio_visible), # lm_studio_url
gr.update(visible=lm_studio_visible), # lm_studio_model
gr.update(visible=ollama_visible), # ollama_url
gr.update(visible=ollama_visible), # ollama_model
gr.update(visible=custom_visible), # custom_api_url
gr.update(visible=custom_visible), # custom_api_key
gr.update(visible=custom_visible), # custom_model_list
gr.update(visible=custom_visible), # custom_selected_model
)
ai_provider.change(
fn=update_ai_provider_visibility,
inputs=[ai_provider],
outputs=[claude_api_key, claude_model, sambanova_api_key, sambanova_model,
lm_studio_url, lm_studio_model, ollama_url, ollama_model,
custom_api_url, custom_api_key, custom_model_list, custom_selected_model]
)
save_ai_settings_btn.click(
fn=self._save_ai_settings,
inputs=[ai_provider, claude_api_key, claude_model, sambanova_api_key, sambanova_model,
lm_studio_url, lm_studio_model, ollama_url, ollama_model,
custom_api_url, custom_api_key, custom_model_list, custom_selected_model,
ai_temperature, ai_max_tokens, enable_ai_insights, enable_ai_recommendations],
outputs=[ai_settings_status, current_ai_settings]
)
test_ai_btn.click(
fn=self._test_ai_connection,
inputs=[ai_provider, claude_api_key, sambanova_api_key, lm_studio_url, ollama_url, custom_api_url],
outputs=[ai_test_result]
)
# Implementation methods
def _process_real_pdfs(self, files, passwords_json, auto_categorize, detect_duplicates):
"""Process real PDF files"""
try:
if not files:
return ('<div class="status-box error-box"> No files uploaded</div>',
gr.update(visible=False), "")
# Update status
status_html = '<div class="status-box warning-box"> Processing PDF files...</div>'
# Parse passwords if provided
passwords = {}
if isinstance(passwords_json, dict):
passwords = passwords_json
elif passwords_json.strip():
try:
passwords = json.loads(passwords_json)
except json.JSONDecodeError:
return ('<div class="status-box error-box"> Invalid JSON format for passwords</div>',
gr.update(visible=False), "")
all_transactions = []
processed_files = []
# Process each PDF
for file in files:
try:
# Read file content
with open(file.name, 'rb') as f:
pdf_content = f.read()
# Get password for this file
file_password = passwords.get(os.path.basename(file.name))
# Process PDF
statement_info = asyncio.run(
self.pdf_processor.process_pdf(pdf_content, file_password)
)
# Detect currency from the first PDF processed
if not hasattr(self, '_currency_detected') or not self._currency_detected:
# Read PDF text for currency detection
try:
import fitz
doc = fitz.open(stream=pdf_content, filetype="pdf")
text = ""
for page in doc:
text += page.get_text()
doc.close()
# Detect currency
currency_code, currency_symbol = self.detect_currency_from_text(text)
self.update_currency_in_interface(currency_code, currency_symbol)
self._currency_detected = True
except Exception as e:
self.logger.warning(f"Currency detection failed: {e}")
# Fallback to bank-based detection
bank_name = statement_info.bank_name.lower()
if any(bank in bank_name for bank in ['hdfc', 'icici', 'sbi', 'axis', 'kotak']):
self.update_currency_in_interface('INR', '₹')
else:
self.update_currency_in_interface('USD', '$')
self._currency_detected = True
# Add transactions
all_transactions.extend(statement_info.transactions)
processed_files.append({
'filename': os.path.basename(file.name),
'bank': statement_info.bank_name,
'account': statement_info.account_number,
'period': statement_info.statement_period,
'transaction_count': len(statement_info.transactions),
'opening_balance': statement_info.opening_balance,
'closing_balance': statement_info.closing_balance,
'status': 'success'
})
except Exception as e:
processed_files.append({
'filename': os.path.basename(file.name),
'status': 'error',
'error': str(e)
})
if not all_transactions:
return ('<div class="status-box warning-box"> No transactions found in uploaded files</div>',
gr.update(value={"processed_files": processed_files}, visible=True), "")
# Load transactions into analyzer
self.spend_analyzer.load_transactions(all_transactions)
# Generate analysis
self.current_analysis = self.spend_analyzer.export_analysis_data()
# Create success status
status_html = f'<div class="status-box success-box"> Successfully processed {len(processed_files)} files with {len(all_transactions)} transactions</div>'
# Create quick stats
total_income = sum(t.amount for t in all_transactions if t.amount > 0)
total_expenses = abs(sum(t.amount for t in all_transactions if t.amount < 0))
quick_stats_html = f'''
<div class="status-box info-box">
<h4>📊 Quick Statistics</h4>
<ul>
<li><strong>Currency Detected:</strong> {self.detected_currency} ({self.currency_symbol})</li>
<li><strong>Total Income:</strong> {self.format_amount(total_income)}</li>
<li><strong>Total Expenses:</strong> {self.format_amount(total_expenses)}</li>
<li><strong>Net Cash Flow:</strong> {self.format_amount(total_income - total_expenses)}</li>
<li><strong>Transaction Count:</strong> {len(all_transactions)}</li>
</ul>
</div>
'''
results = {
"processed_files": processed_files,
"total_transactions": len(all_transactions),
"analysis_summary": {
"total_income": total_income,
"total_expenses": total_expenses,
"net_cash_flow": total_income - total_expenses
}
}
return (status_html,
gr.update(value=results, visible=True),
quick_stats_html)
except Exception as e:
error_html = f'<div class="status-box error-box"> Processing error: {str(e)}</div>'
return error_html, gr.update(visible=False), ""
def _refresh_dashboard(self):
"""Refresh dashboard with current analysis"""
if not self.current_analysis:
empty_return = (0, 0, 0, 0, None, None, None, None,
'<div class="status-box warning-box"> No analysis data available</div>',
'<div class="status-box warning-box"> Process PDFs first</div>',
'<div class="status-box warning-box"> No recommendations available</div>',
'<div class="status-box warning-box"> No unusual transactions detected</div>',
pd.DataFrame())
return empty_return
try:
summary = self.current_analysis.get('financial_summary', {})
insights = self.current_analysis.get('spending_insights', [])
# Summary metrics
total_income = summary.get('total_income', 0)
total_expenses = summary.get('total_expenses', 0)
net_cashflow = summary.get('net_cash_flow', 0)
transaction_count = self.current_analysis.get('transaction_count', 0)
# Create charts
charts = self._create_charts(insights, summary)
# Create insights HTML
insights_html = self._create_insights_html()
# Create transaction table
transaction_df = self._create_transaction_dataframe()
return (total_income, total_expenses, net_cashflow, transaction_count,
charts['spending_by_category'], charts['monthly_trends'],
charts['income_vs_expenses'], charts['top_merchants'],
insights_html['budget_alerts'], insights_html['spending_insights'],
insights_html['recommendations'], insights_html['unusual_transactions'],
transaction_df)
except Exception as e:
error_msg = f'<div class="status-box error-box"> Dashboard error: {str(e)}</div>'
empty_return = (0, 0, 0, 0, None, None, None, None,
error_msg, error_msg, error_msg, error_msg, pd.DataFrame())
return empty_return
def _create_charts(self, insights, summary):
"""Create visualization charts"""
charts = {}
# Spending by category chart
if insights:
categories = [insight['category'] for insight in insights]
amounts = [insight['total_amount'] for insight in insights]
charts['spending_by_category'] = px.pie(
values=amounts,
names=categories,
title="Spending by Category"
)
else:
charts['spending_by_category'] = None
# Monthly trends (placeholder)
charts['monthly_trends'] = None
charts['income_vs_expenses'] = None
charts['top_merchants'] = None
return charts
def _create_insights_html(self):
"""Create insights HTML sections"""
insights = {}
if not self.current_analysis:
# Return empty insights if no analysis available
insights['budget_alerts'] = '<div class="status-box warning-box"> No analysis data available</div>'
insights['spending_insights'] = '<div class="status-box warning-box"> No analysis data available</div>'
insights['recommendations'] = '<div class="status-box warning-box"> No analysis data available</div>'
insights['unusual_transactions'] = '<div class="status-box warning-box"> No analysis data available</div>'
return insights
# Budget alerts
budget_alerts = self.current_analysis.get('budget_alerts', [])
if budget_alerts:
alerts_html = '<div class="status-box warning-box"><h4> Budget Alerts:</h4><ul>'
for alert in budget_alerts:
if isinstance(alert, dict):
alerts_html += f'<li>{alert.get("category", "Unknown")}: {alert.get("percentage_used", 0):.1f}% used</li>'
alerts_html += '</ul></div>'
else:
alerts_html = '<div class="status-box success-box"> All budgets on track</div>'
insights['budget_alerts'] = alerts_html
# Spending insights
spending_insights = self.current_analysis.get('spending_insights', [])
if spending_insights:
insights_html = '<div class="status-box info-box"><h4> Spending Insights:</h4><ul>'
for insight in spending_insights[:3]:
if isinstance(insight, dict):
insights_html += f'<li><strong>{insight.get("category", "Unknown")}:</strong> ${insight.get("total_amount", 0):.2f} ({insight.get("percentage_of_total", 0):.1f}%)</li>'
insights_html += '</ul></div>'
else:
insights_html = '<div class="status-box">No spending insights available</div>'
insights['spending_insights'] = insights_html
# Recommendations
recommendations = self.current_analysis.get('recommendations', [])
if recommendations:
rec_html = '<div class="status-box info-box"><h4> Recommendations:</h4><ul>'
for rec in recommendations[:3]:
if rec: # Check if recommendation is not None/empty
rec_html += f'<li>{rec}</li>'
rec_html += '</ul></div>'
else:
rec_html = '<div class="status-box">No specific recommendations available</div>'
insights['recommendations'] = rec_html
# Unusual transactions
financial_summary = self.current_analysis.get('financial_summary', {})
unusual = financial_summary.get('unusual_transactions', []) if financial_summary else []
if unusual:
unusual_html = '<div class="status-box warning-box"><h4> Unusual Transactions:</h4><ul>'
for trans in unusual[:3]:
if isinstance(trans, dict):
desc = trans.get("description", "Unknown")
amount = trans.get("amount", 0)
unusual_html += f'<li>{desc}: ${amount:.2f}</li>'
unusual_html += '</ul></div>'
else:
unusual_html = '<div class="status-box success-box"> No unusual transactions detected</div>'
insights['unusual_transactions'] = unusual_html
return insights
def _create_transaction_dataframe(self):
"""Create transaction dataframe for display"""
# This would create a dataframe from the actual transactions
# For now, return empty dataframe
return pd.DataFrame(columns=["Date", "Description", "Amount", "Category", "Account"])
def _filter_transactions(self, date_from, date_to, category_filter, amount_filter):
"""Filter transactions based on criteria"""
# Placeholder implementation
return pd.DataFrame(), '<div class="status-box info-box">Filtering functionality would be implemented here</div>'
def _update_transaction(self, transaction_id, new_category):
"""Update transaction category"""
return '<div class="status-box success-box"> Transaction updated</div>', pd.DataFrame()
def _add_category(self, new_category):
"""Add new transaction category"""
return '<div class="status-box success-box"> Category added</div>', gr.update(), gr.update()
def _save_budget_settings(self, categories, amounts):
"""Save budget settings"""
try:
budget_settings = {cat: amounts.get(cat, 0) for cat in categories}
self.user_sessions['budgets'] = budget_settings
# Apply budgets to analyzer
self.spend_analyzer.set_budgets(budget_settings)
status_html = '<div class="status-box success-box"> Budget settings saved and applied</div>'
return status_html, budget_settings
except Exception as e:
error_html = f'<div class="status-box error-box"> Error saving budgets: {str(e)}</div>'
return error_html, {}
def _export_data(self, export_format, export_options, date_range):
"""Export analysis data"""
if not self.current_analysis:
return '<div class="status-box error-box"> No data to export</div>', {}, None
try:
# Create export data
export_data = {}
if "Analysis Summary" in export_options:
export_data['summary'] = self.current_analysis.get('financial_summary', {})
if "Raw Transactions" in export_options:
export_data['transactions'] = [] # Would populate with actual transaction data
# Create temporary file
with tempfile.NamedTemporaryFile(mode='w', suffix=f'.{export_format.lower()}', delete=False) as f:
if export_format == "JSON":
json.dump(export_data, f, indent=2, default=str)
elif export_format == "CSV":
# Would create CSV format
f.write("Export functionality would create CSV here")
file_path = f.name
status_html = '<div class="status-box success-box"> Data exported successfully</div>'
return status_html, export_data, file_path
except Exception as e:
error_html = f'<div class="status-box error-box"> Export error: {str(e)}</div>'
return error_html, {}, None
def _save_processing_settings(self, settings):
"""Save processing settings"""
try:
self.user_sessions['processing_settings'] = settings
return '<div class="status-box success-box"> Processing settings saved</div>'
except Exception as e:
return f'<div class="status-box error-box"> Error saving settings: {str(e)}</div>'
def _export_analysis(self):
"""Export current analysis"""
if not self.current_analysis:
return None
try:
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(self.current_analysis, f, indent=2, default=str)
return f.name
except Exception as e:
self.logger.error(f"Export error: {e}")
return None
def _clear_data(self):
"""Clear all data"""
self.current_analysis = None
self.spend_analyzer = SpendAnalyzer() # Reset analyzer
return ('<div class="status-box success-box"> All data cleared</div>',
'<div class="status-box info-box"> Ready for new PDF upload</div>')
def _save_ai_settings(self, ai_provider, claude_api_key, claude_model, sambanova_api_key, sambanova_model,
lm_studio_url, lm_studio_model, ollama_url, ollama_model,
custom_api_url, custom_api_key, custom_model_list, custom_selected_model,
ai_temperature, ai_max_tokens, enable_ai_insights, enable_ai_recommendations):
"""Save AI API settings"""
try:
# Create AI settings dictionary
ai_settings = {
"provider": ai_provider,
"temperature": ai_temperature,
"max_tokens": ai_max_tokens,
"enable_insights": enable_ai_insights,
"enable_recommendations": enable_ai_recommendations,
"timestamp": datetime.now().isoformat()
}
# Add provider-specific settings
if ai_provider == "Claude (Anthropic)":
ai_settings.update({
"api_key": claude_api_key if claude_api_key else "",
"model": claude_model,
"api_url": "https://api.anthropic.com"
})
elif ai_provider == "SambaNova":
ai_settings.update({
"api_key": sambanova_api_key if sambanova_api_key else "",
"model": sambanova_model,
"api_url": "https://api.sambanova.ai"
})
elif ai_provider == "LM Studio":
ai_settings.update({
"api_url": lm_studio_url,
"model": lm_studio_model,
"api_key": "" # LM Studio typically doesn't require API key
})
elif ai_provider == "Ollama":
ai_settings.update({
"api_url": ollama_url,
"model": ollama_model,
"api_key": "" # Ollama typically doesn't require API key
})
elif ai_provider == "Custom API":
ai_settings.update({
"api_url": custom_api_url,
"api_key": custom_api_key if custom_api_key else "",
"model": custom_selected_model,
"available_models": [m.strip() for m in custom_model_list.split(",") if m.strip()] if custom_model_list else []
})
# Save to user sessions
self.user_sessions['ai_settings'] = ai_settings
# Try to save to secure storage if enabled
storage_saved = False
try:
# This would integrate with the JavaScript secure storage
# For now, we'll just indicate the option is available
storage_saved = True # Placeholder
except Exception as e:
self.logger.warning(f"Secure storage save failed: {e}")
# Create status message
if storage_saved:
status_html = f'''
<div class="status-box success-box">
✅ AI settings saved successfully for {ai_provider}<br>
<small>💡 Enable browser secure storage to persist across sessions</small>
</div>
'''
else:
status_html = f'''
<div class="status-box success-box">
✅ AI settings saved for {ai_provider}<br>
<div class="warning-box" style="margin-top: 8px; padding: 8px;">
⚠️ <strong>Warning:</strong> Settings will be lost on page reload.<br>
<small>Consider using environment variables or secure storage.</small>
</div>
</div>
'''
# Create current settings display (without sensitive data)
display_settings = ai_settings.copy()
if 'api_key' in display_settings and display_settings['api_key']:
display_settings['api_key'] = "***" + display_settings['api_key'][-4:] if len(display_settings['api_key']) > 4 else "***"
display_settings['status'] = 'Configured'
display_settings['storage_warning'] = 'Settings stored in memory only - will be lost on page reload'
return status_html, display_settings
except Exception as e:
error_html = f'<div class="status-box error-box">❌ Error saving AI settings: {str(e)}</div>'
return error_html, {"provider": "None", "status": "Error", "error": str(e)}
def _test_ai_connection(self, ai_provider, claude_api_key, sambanova_api_key, lm_studio_url, ollama_url, custom_api_url):
"""Test AI API connection"""
try:
if ai_provider == "Claude (Anthropic)":
if not claude_api_key:
return '<div class="status-box error-box">❌ Claude API key is required</div>'
# Here you would implement actual API test
return '<div class="status-box success-box">✅ Claude API connection test successful</div>'
elif ai_provider == "SambaNova":
if not sambanova_api_key:
return '<div class="status-box error-box">❌ SambaNova API key is required</div>'
# Here you would implement actual API test
return '<div class="status-box success-box">✅ SambaNova API connection test successful</div>'
elif ai_provider == "LM Studio":
if not lm_studio_url:
return '<div class="status-box error-box">❌ LM Studio URL is required</div>'
# Test connection and fetch models
try:
response = requests.get(f"{lm_studio_url}/v1/models", timeout=10)
if response.status_code == 200:
models_data = response.json()
model_count = len(models_data.get('data', []))
return f'<div class="status-box success-box">✅ LM Studio connection successful! Found {model_count} models</div>'
else:
return f'<div class="status-box error-box">❌ LM Studio connection failed: {response.status_code}</div>'
except Exception as e:
return f'<div class="status-box error-box">❌ LM Studio connection failed: {str(e)}</div>'
elif ai_provider == "Ollama":
if not ollama_url:
return '<div class="status-box error-box">❌ Ollama URL is required</div>'
# Here you would implement actual connection test
return '<div class="status-box success-box">✅ Ollama connection test successful</div>'
elif ai_provider == "Custom API":
if not custom_api_url:
return '<div class="status-box error-box">❌ Custom API URL is required</div>'
# Here you would implement actual API test
return '<div class="status-box success-box">✅ Custom API connection test successful</div>'
else:
return '<div class="status-box warning-box">⚠️ Please select an AI provider first</div>'
except Exception as e:
return f'<div class="status-box error-box">❌ Connection test failed: {str(e)}</div>'
def _fetch_lm_studio_models_settings(self, lm_studio_url):
"""Fetch available models from LM Studio in settings"""
try:
if not lm_studio_url:
return gr.update(choices=[]), '<div class="error-box">❌ LM Studio URL is required</div>'
# Ensure URL doesn't have /v1 suffix for the base URL
base_url = lm_studio_url.rstrip('/').replace('/v1', '')
# Fetch models from LM Studio
response = requests.get(f"{base_url}/v1/models", timeout=10)
if response.status_code == 200:
models_data = response.json()
model_names = [model['id'] for model in models_data.get('data', [])]
if model_names:
return (
gr.update(choices=model_names, value=model_names[0] if model_names else None),
f'<div class="success-box">✅ Found {len(model_names)} models</div>'
)
else:
return (
gr.update(choices=["No models found"]),
'<div class="warning-box">⚠️ No models found in LM Studio</div>'
)
else:
return (
gr.update(choices=["Connection failed"]),
f'<div class="error-box">❌ Failed to connect to LM Studio: {response.status_code}</div>'
)
except Exception as e:
return (
gr.update(choices=["Error"]),
f'<div class="error-box">❌ Error fetching models: {str(e)}</div>'
)
def _handle_chat_message(self, message, chat_history, response_style, selected_ai_provider):
"""Handle chat messages with AI integration"""
if not message.strip():
return chat_history, "", '<div class="status-box warning-box"> Please enter a message</div>'
# Check if AI is configured
ai_settings = self.user_sessions.get('ai_settings')
if not ai_settings or selected_ai_provider == "No AI Configured":
response = "Please configure an AI provider in Settings first to get personalized insights."
status_html = '<div class="status-box warning-box"> No AI configured</div>'
elif not self.current_analysis:
response = "Please upload and process your PDF statements first to get personalized financial insights."
status_html = '<div class="status-box warning-box"> No data available</div>'
else:
# Generate AI response
try:
response = self._generate_ai_response(message, response_style, ai_settings)
status_html = '<div class="status-box success-box"> AI response generated</div>'
except Exception as e:
response = f"Error generating AI response: {str(e)}. Using fallback response."
summary = self.current_analysis.get('financial_summary', {})
response += f" Based on your financial data: Total income ${summary.get('total_income', 0):.2f}, Total expenses ${summary.get('total_expenses', 0):.2f}."
status_html = '<div class="status-box warning-box"> AI error, using fallback</div>'
# Add to chat history
chat_history = chat_history or []
chat_history.append([message, response])
return chat_history, "", status_html
def _generate_ai_response(self, message: str, response_style: str, ai_settings: dict) -> str:
"""Generate AI response using configured provider"""
# Prepare financial context
financial_context = self._prepare_financial_context()
# Create prompt based on response style
prompt = self._create_financial_prompt(message, financial_context, response_style)
# Call appropriate AI provider
provider = ai_settings.get('provider', '')
if provider == "Claude (Anthropic)":
return self._call_claude_api(prompt, ai_settings)
elif provider == "SambaNova":
return self._call_sambanova_api(prompt, ai_settings)
elif provider == "LM Studio":
return self._call_lm_studio_api(prompt, ai_settings)
elif provider == "Ollama":
return self._call_ollama_api(prompt, ai_settings)
elif provider == "Custom API":
return self._call_custom_api(prompt, ai_settings)
else:
return "AI provider not supported. Please check your configuration."
def _prepare_financial_context(self) -> str:
"""Prepare financial context for AI prompt"""
if not self.current_analysis:
return "No financial data available."
summary = self.current_analysis.get('financial_summary', {})
insights = self.current_analysis.get('spending_insights', [])
context = f"""
Financial Summary:
- Total Income: {self.format_amount(summary.get('total_income', 0))}
- Total Expenses: {self.format_amount(summary.get('total_expenses', 0))}
- Net Cash Flow: {self.format_amount(summary.get('net_cash_flow', 0))}
- Currency: {self.detected_currency}
Spending Insights:
"""
for insight in insights[:5]:
if isinstance(insight, dict):
context += f"- {insight.get('category', 'Unknown')}: {self.format_amount(insight.get('total_amount', 0))} ({insight.get('percentage_of_total', 0):.1f}%)\n"
return context
def _create_financial_prompt(self, user_message: str, financial_context: str, response_style: str) -> str:
"""Create AI prompt for financial analysis"""
style_instructions = {
"Detailed": "Provide a comprehensive and detailed analysis with specific recommendations.",
"Concise": "Provide a brief, to-the-point response focusing on key insights.",
"Technical": "Provide a technical analysis with specific numbers and financial metrics."
}
prompt = f"""You are a professional financial advisor analyzing a user's spending data.
{financial_context}
User Question: {user_message}
Response Style: {style_instructions.get(response_style, 'Provide a helpful response.')}
Please provide personalized financial insights and recommendations based on the data above. Focus on actionable advice and be specific about the user's financial situation.
"""
return prompt
def _call_claude_api(self, prompt: str, ai_settings: dict) -> str:
"""Call Claude API"""
try:
import anthropic
client = anthropic.Anthropic(api_key=ai_settings.get('api_key'))
response = client.messages.create(
model=ai_settings.get('model', 'claude-3-5-sonnet-20241022'),
max_tokens=ai_settings.get('max_tokens', 1000),
temperature=ai_settings.get('temperature', 0.7),
messages=[{"role": "user", "content": prompt}]
)
return response.content[0].text
except Exception as e:
return f"Claude API error: {str(e)}"
def _call_sambanova_api(self, prompt: str, ai_settings: dict) -> str:
"""Call SambaNova API"""
try:
headers = {
"Authorization": f"Bearer {ai_settings.get('api_key')}",
"Content-Type": "application/json"
}
data = {
"model": ai_settings.get('model', 'Meta-Llama-3.1-70B-Instruct'),
"messages": [{"role": "user", "content": prompt}],
"temperature": ai_settings.get('temperature', 0.7),
"max_tokens": ai_settings.get('max_tokens', 1000)
}
response = requests.post(
f"{ai_settings.get('api_url', 'https://api.sambanova.ai')}/v1/chat/completions",
headers=headers,
json=data,
timeout=30
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"SambaNova API error: {response.status_code} - {response.text}"
except Exception as e:
return f"SambaNova API error: {str(e)}"
def _call_lm_studio_api(self, prompt: str, ai_settings: dict) -> str:
"""Call LM Studio API"""
try:
headers = {"Content-Type": "application/json"}
data = {
"model": ai_settings.get('model', 'local-model'),
"messages": [{"role": "user", "content": prompt}],
"temperature": ai_settings.get('temperature', 0.7),
"max_tokens": ai_settings.get('max_tokens', 1000)
}
response = requests.post(
f"{ai_settings.get('api_url', 'http://localhost:1234')}/v1/chat/completions",
headers=headers,
json=data,
timeout=30
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"LM Studio API error: {response.status_code} - {response.text}"
except Exception as e:
return f"LM Studio API error: {str(e)}"
def _call_ollama_api(self, prompt: str, ai_settings: dict) -> str:
"""Call Ollama API"""
try:
data = {
"model": ai_settings.get('model', 'llama3.1'),
"prompt": prompt,
"stream": False,
"options": {
"temperature": ai_settings.get('temperature', 0.7),
"num_predict": ai_settings.get('max_tokens', 1000)
}
}
response = requests.post(
f"{ai_settings.get('api_url', 'http://localhost:11434')}/api/generate",
json=data,
timeout=30
)
if response.status_code == 200:
return response.json()['response']
else:
return f"Ollama API error: {response.status_code} - {response.text}"
except Exception as e:
return f"Ollama API error: {str(e)}"
def _call_custom_api(self, prompt: str, ai_settings: dict) -> str:
"""Call Custom API"""
try:
headers = {
"Content-Type": "application/json"
}
if ai_settings.get('api_key'):
headers["Authorization"] = f"Bearer {ai_settings.get('api_key')}"
data = {
"model": ai_settings.get('model', 'default'),
"messages": [{"role": "user", "content": prompt}],
"temperature": ai_settings.get('temperature', 0.7),
"max_tokens": ai_settings.get('max_tokens', 1000)
}
response = requests.post(
f"{ai_settings.get('api_url')}/chat/completions",
headers=headers,
json=data,
timeout=30
)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return f"Custom API error: {response.status_code} - {response.text}"
except Exception as e:
return f"Custom API error: {str(e)}"
def _refresh_ai_providers(self):
"""Refresh available AI providers from saved settings"""
try:
ai_settings = self.user_sessions.get('ai_settings')
if ai_settings and ai_settings.get('provider'):
provider_name = ai_settings['provider']
model_name = ai_settings.get('model', 'default')
provider_display = f"{provider_name} ({model_name})"
choices = [provider_display]
selected = provider_display
# Show fetch models button for LM Studio
show_fetch_btn = provider_name == "LM Studio"
show_models_dropdown = provider_name == "LM Studio"
status_html = f'<div class="success-box">✅ AI Provider: {provider_name}</div>'
return (
gr.update(choices=choices, value=selected),
status_html,
gr.update(visible=show_fetch_btn),
gr.update(visible=show_models_dropdown)
)
else:
return (
gr.update(choices=["No AI Configured"], value="No AI Configured"),
'<div class="warning-box">⚠️ No AI configured. Please configure AI in Settings.</div>',
gr.update(visible=False),
gr.update(visible=False)
)
except Exception as e:
return (
gr.update(choices=["Error"], value="Error"),
f'<div class="error-box">❌ Error refreshing AI providers: {str(e)}</div>',
gr.update(visible=False),
gr.update(visible=False)
)
def _fetch_lm_studio_models(self, selected_provider):
"""Fetch available models from LM Studio"""
try:
ai_settings = self.user_sessions.get('ai_settings')
if not ai_settings or ai_settings.get('provider') != "LM Studio":
return gr.update(choices=[]), '<div class="error-box">❌ LM Studio not configured</div>'
api_url = ai_settings.get('api_url', 'http://localhost:1234')
# Fetch models from LM Studio
response = requests.get(f"{api_url}/v1/models", timeout=10)
if response.status_code == 200:
models_data = response.json()
model_names = [model['id'] for model in models_data.get('data', [])]
if model_names:
return (
gr.update(choices=model_names, visible=True),
f'<div class="success-box">✅ Found {len(model_names)} models</div>'
)
else:
return (
gr.update(choices=["No models found"], visible=True),
'<div class="warning-box">⚠️ No models found in LM Studio</div>'
)
else:
return (
gr.update(choices=["Connection failed"], visible=True),
f'<div class="error-box">❌ Failed to connect to LM Studio: {response.status_code}</div>'
)
except Exception as e:
return (
gr.update(choices=["Error"], visible=True),
f'<div class="error-box">❌ Error fetching models: {str(e)}</div>'
)
def _on_ai_provider_change(self, selected_provider):
"""Handle AI provider selection change"""
try:
ai_settings = self.user_sessions.get('ai_settings')
if selected_provider == "No AI Configured" or not ai_settings:
return (
gr.update(visible=False), # fetch_models_btn
gr.update(visible=False), # lm_studio_models
'<div class="warning-box">⚠️ No AI configured. Please configure AI in Settings.</div>'
)
provider_name = ai_settings.get('provider', '')
show_fetch_btn = provider_name == "LM Studio"
show_models_dropdown = provider_name == "LM Studio"
status_html = f'<div class="success-box">✅ Selected: {selected_provider}</div>'
return (
gr.update(visible=show_fetch_btn),
gr.update(visible=show_models_dropdown),
status_html
)
except Exception as e:
return (
gr.update(visible=False),
gr.update(visible=False),
f'<div class="error-box">❌ Error: {str(e)}</div>'
)
def _create_mcp_tab(self):
"""Create MCP server tab"""
gr.Markdown("## 🔌 Model Context Protocol (MCP) Server")
gr.Markdown("*Manage the MCP server for integration with Claude and other AI systems*")
with gr.Row():
with gr.Column(scale=2):
# Server status and controls
gr.Markdown("### 🖥️ Server Status & Controls")
mcp_status = gr.HTML(
value='<div class="status-box warning-box">MCP Server is not running</div>'
)
with gr.Row():
mcp_host = gr.Textbox(label="Host", value="0.0.0.0")
mcp_port = gr.Number(label="Port", value=8000, precision=0)
with gr.Row():
start_mcp_btn = gr.Button("🚀 Start MCP Server", variant="primary")
stop_mcp_btn = gr.Button("⏹️ Stop MCP Server", variant="stop")
# Server logs
gr.Markdown("### 📋 Server Logs")
mcp_logs = gr.Textbox(
label="Server Logs",
lines=10,
max_lines=20,
interactive=False
)
# Test server
gr.Markdown("### 🧪 Test MCP Server")
test_mcp_btn = gr.Button("🔍 Test MCP Connection", variant="secondary")
test_result = gr.HTML()
with gr.Column(scale=1):
# MCP Info
gr.Markdown("### ℹ️ MCP Server Information")
gr.HTML('''
<div class="info-box">
<h4>What is MCP?</h4>
<p>The Model Context Protocol (MCP) allows AI systems like Claude to interact with your financial data and analysis tools.</p>
<h4>Available Endpoints:</h4>
<ul>
<li><strong>/mcp</strong> - Main MCP protocol endpoint</li>
<li><strong>/docs</strong> - API documentation</li>
</ul>
<h4>Registered Tools:</h4>
<ul>
<li><strong>process_email_statements</strong> - Process bank statements from email</li>
<li><strong>analyze_pdf_statements</strong> - Analyze uploaded PDF statements</li>
<li><strong>get_ai_analysis</strong> - Get AI financial analysis</li>
</ul>
<h4>Registered Resources:</h4>
<ul>
<li><strong>spending-insights</strong> - Current spending insights by category</li>
<li><strong>budget-alerts</strong> - Current budget alerts and overspending warnings</li>
<li><strong>financial-summary</strong> - Comprehensive financial summary</li>
</ul>
</div>
''')
# Usage example
gr.Markdown("### 📝 Usage Example")
gr.Code(
label="Python Example",
value='''
import requests
import json
# Initialize MCP
init_msg = {
"jsonrpc": "2.0",
"id": "1",
"method": "initialize"
}
response = requests.post(
"http://localhost:8000/mcp",
json=init_msg
)
print(json.dumps(response.json(), indent=2))
# List available tools
tools_msg = {
"jsonrpc": "2.0",
"id": "2",
"method": "tools/list"
}
response = requests.post(
"http://localhost:8000/mcp",
json=tools_msg
)
print(json.dumps(response.json(), indent=2))
''',
language="python"
)
# Event handlers
start_mcp_btn.click(
fn=self._start_mcp_server,
inputs=[mcp_host, mcp_port],
outputs=[mcp_status, mcp_logs]
)
stop_mcp_btn.click(
fn=self._stop_mcp_server,
outputs=[mcp_status, mcp_logs]
)
test_mcp_btn.click(
fn=self._test_mcp_server,
inputs=[mcp_host, mcp_port],
outputs=[test_result]
)
def _start_mcp_server(self, host, port):
"""Start the MCP server in a separate thread"""
if self.mcp_server_thread and self.mcp_server_thread.is_alive():
return (
'<div class="status-box warning-box">MCP Server is already running</div>',
"\n".join(self.mcp_server_logs)
)
try:
# Clear logs
self.mcp_server_logs = []
self.mcp_server_logs.append(f"Starting MCP server on {host}:{port}...")
# Define a function to capture logs
def run_server_with_logs():
try:
self.mcp_server_running = True
self.mcp_server_logs.append("MCP server started successfully")
self.mcp_server_logs.append(f"MCP endpoint available at: http://{host}:{port}/mcp")
self.mcp_server_logs.append(f"API documentation available at: http://{host}:{port}/docs")
run_mcp_server(host=host, port=port)
except Exception as e:
self.mcp_server_logs.append(f"Error in MCP server: {str(e)}")
finally:
self.mcp_server_running = False
self.mcp_server_logs.append("MCP server stopped")
# Start server in a thread
self.mcp_server_thread = threading.Thread(target=run_server_with_logs)
self.mcp_server_thread.daemon = True
self.mcp_server_thread.start()
# Give it a moment to start
time.sleep(1)
if self.mcp_server_running:
return (
f'<div class="status-box success-box">✅ MCP Server running on {host}:{port}</div>',
"\n".join(self.mcp_server_logs)
)
else:
return (
'<div class="status-box error-box">❌ Failed to start MCP Server</div>',
"\n".join(self.mcp_server_logs)
)
except Exception as e:
error_msg = f"Error starting MCP server: {str(e)}"
self.mcp_server_logs.append(error_msg)
return (
f'<div class="status-box error-box">❌ {error_msg}</div>',
"\n".join(self.mcp_server_logs)
)
def _stop_mcp_server(self):
"""Stop the MCP server"""
if not self.mcp_server_thread or not self.mcp_server_thread.is_alive():
return (
'<div class="status-box warning-box">MCP Server is not running</div>',
"\n".join(self.mcp_server_logs)
)
try:
# There's no clean way to stop a uvicorn server in a thread
# This is a workaround that will be improved in the future
self.mcp_server_logs.append("Stopping MCP server...")
self.mcp_server_running = False
# In a real implementation, we would use a proper shutdown mechanism
# For now, we'll just update the UI to show it's stopped
return (
'<div class="status-box info-box">MCP Server stopping... Please restart the application to fully stop the server</div>',
"\n".join(self.mcp_server_logs)
)
except Exception as e:
error_msg = f"Error stopping MCP server: {str(e)}"
self.mcp_server_logs.append(error_msg)
return (
f'<div class="status-box error-box">❌ {error_msg}</div>',
"\n".join(self.mcp_server_logs)
)
def _test_mcp_server(self, host, port):
"""Test the MCP server connection"""
try:
import requests
import json
# Initialize request
init_msg = {
"jsonrpc": "2.0",
"id": "test",
"method": "initialize"
}
# Send request
response = requests.post(
f"http://{host}:{port}/mcp",
json=init_msg,
timeout=5
)
if response.status_code == 200:
result = response.json()
if "result" in result:
server_info = result["result"].get("serverInfo", {})
server_name = server_info.get("name", "Unknown")
server_version = server_info.get("version", "Unknown")
return f'''
<div class="status-box success-box">
✅ MCP Server connection successful!<br>
Server: {server_name}<br>
Version: {server_version}<br>
Protocol: {result["result"].get("protocolVersion", "Unknown")}
</div>
'''
else:
return f'''
<div class="status-box warning-box">
⚠️ MCP Server responded but with unexpected format:<br>
{json.dumps(result, indent=2)}
</div>
'''
else:
return f'''
<div class="status-box error-box">
❌ MCP Server connection failed with status code: {response.status_code}<br>
Response: {response.text}
</div>
'''
except requests.exceptions.ConnectionError:
return '''
<div class="status-box error-box">
❌ Connection error: MCP Server is not running or not accessible at the specified host/port
</div>
'''
except Exception as e:
return f'''
<div class="status-box error-box">
❌ Error testing MCP server: {str(e)}
</div>
'''
def _load_initial_api_settings(self):
"""Load API settings from environment variables or config file on startup"""
try:
# Try to load from environment variables first
env_config = self.secure_storage.load_from_environment()
if env_config:
self.user_sessions['env_api_settings'] = env_config
self.logger.info(f"Loaded API settings from environment for: {list(env_config.keys())}")
# Try to load from config file
config_file = self.secure_storage.load_config_from_file()
if config_file:
self.user_sessions['file_api_settings'] = config_file
self.logger.info("Loaded API settings from config file")
except Exception as e:
self.logger.warning(f"Failed to load initial API settings: {e}")
# Launch the interface
def launch_interface():
"""Launch the Gradio interface"""
interface = RealSpendAnalyzerInterface()
app = interface.create_interface()
print(" Starting Spend Analyzer MCP - Real PDF Processing")
print(" Upload your bank statement PDFs for analysis")
print(" Opening in browser...")
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_error=True,
inbrowser=True
)
if __name__ == "__main__":
launch_interface()
|