File size: 13,290 Bytes
ed1f7cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# Spend Analyzer MCP - API Documentation

This document provides comprehensive API documentation for the Spend Analyzer MCP system, including Modal functions, MCP protocol integration, and local usage.

## Table of Contents

1. [Modal Functions API](#modal-functions-api)
2. [MCP Protocol Integration](#mcp-protocol-integration)
3. [Local Python API](#local-python-api)
4. [Data Formats](#data-formats)
5. [Error Handling](#error-handling)
6. [Examples](#examples)

## Modal Functions API

### 1. `process_bank_statements`

Process bank statements from email attachments.

**Function Signature:**
```python
def process_bank_statements(
    email_config: Dict, 
    days_back: int = 30, 
    passwords: Optional[Dict] = None
) -> Dict
```

**Parameters:**
- `email_config` (Dict): Email configuration
  - `email` (str): Email address
  - `password` (str): App-specific password
  - `imap_server` (str): IMAP server address
- `days_back` (int): Number of days to look back (default: 30)
- `passwords` (Dict, optional): PDF passwords by filename

**Returns:**
```python
{
    "processed_statements": [
        {
            "filename": str,
            "bank": str,
            "account": str,
            "period": str,
            "transaction_count": int,
            "status": str  # "success", "password_required", "error"
        }
    ],
    "total_transactions": int,
    "analysis": Dict,  # Financial analysis data
    "timestamp": str   # ISO format
}
```

**Example:**
```python
import modal

app = modal.App.lookup("spend-analyzer-mcp-bmt")
process_statements = app["process_bank_statements"]

email_config = {
    "email": "[email protected]",
    "password": "app_password",
    "imap_server": "imap.gmail.com"
}

result = process_statements.remote(email_config, days_back=30)
print(f"Processed {result['total_transactions']} transactions")
```

### 2. `analyze_uploaded_statements`

Analyze directly uploaded PDF statements.

**Function Signature:**
```python
def analyze_uploaded_statements(
    pdf_contents: Dict[str, bytes], 
    passwords: Optional[Dict] = None
) -> Dict
```

**Parameters:**
- `pdf_contents` (Dict[str, bytes]): Mapping of filename to PDF content
- `passwords` (Dict, optional): PDF passwords by filename

**Returns:**
```python
{
    "processed_files": [
        {
            "filename": str,
            "bank": str,
            "account": str,
            "transaction_count": int,
            "status": str
        }
    ],
    "total_transactions": int,
    "analysis": Dict
}
```

**Example:**
```python
# Read PDF files
pdf_contents = {}
with open("statement1.pdf", "rb") as f:
    pdf_contents["statement1.pdf"] = f.read()

analyze_pdfs = app["analyze_uploaded_statements"]
result = analyze_pdfs.remote(pdf_contents)
```

### 3. `get_ai_analysis`

Get AI-powered financial analysis using Claude or SambaNova.

**Function Signature:**
```python
def get_ai_analysis(
    analysis_data: Dict, 
    user_question: str = "", 
    provider: str = "claude"
) -> Dict
```

**Parameters:**
- `analysis_data` (Dict): Financial analysis data
- `user_question` (str): Specific question for the AI
- `provider` (str): "claude" or "sambanova"

**Returns:**
```python
{
    "ai_analysis": str,      # AI-generated analysis text
    "provider": str,         # AI provider used
    "model": str,           # Model name
    "usage": {
        "input_tokens": int,
        "output_tokens": int,
        "total_tokens": int
    }
}
```

**Example:**
```python
get_analysis = app["get_ai_analysis"]

analysis_data = {
    "spending_insights": [...],
    "financial_summary": {...},
    "recommendations": [...]
}

# Use Claude for detailed analysis
claude_result = get_analysis.remote(
    analysis_data, 
    "What are my biggest spending risks?", 
    "claude"
)

# Use SambaNova for quick insights
sambanova_result = get_analysis.remote(
    analysis_data, 
    "Quick spending summary", 
    "sambanova"
)
```

### 4. `save_user_data` / `load_user_data`

Persistent storage for user analysis data.

**Save Function:**
```python
def save_user_data(user_id: str, data: Dict) -> Dict
```

**Load Function:**
```python
def load_user_data(user_id: str) -> Dict
```

**Example:**
```python
save_data = app["save_user_data"]
load_data = app["load_user_data"]

# Save user analysis
save_result = save_data.remote("user123", analysis_data)

# Load user analysis
load_result = load_data.remote("user123")
if load_result["status"] == "found":
    user_data = load_result["data"]
```

## MCP Protocol Integration

### Webhook Endpoint

The system provides an MCP webhook endpoint for external integrations:

**URL:** `https://your-modal-app.modal.run/mcp_webhook`
**Method:** POST
**Content-Type:** application/json

### MCP Tools

#### 1. `process_email_statements`

**Description:** Process bank statements from email
**Input Schema:**
```json
{
  "type": "object",
  "properties": {
    "email_config": {
      "type": "object",
      "properties": {
        "email": {"type": "string"},
        "password": {"type": "string"},
        "imap_server": {"type": "string"}
      }
    },
    "days_back": {"type": "integer", "default": 30},
    "passwords": {"type": "object"}
  }
}
```

#### 2. `analyze_pdf_statements`

**Description:** Analyze uploaded PDF statements
**Input Schema:**
```json
{
  "type": "object",
  "properties": {
    "pdf_contents": {"type": "object"},
    "passwords": {"type": "object"}
  }
}
```

#### 3. `get_ai_analysis`

**Description:** Get AI financial analysis
**Input Schema:**
```json
{
  "type": "object",
  "properties": {
    "analysis_data": {"type": "object"},
    "user_question": {"type": "string"},
    "provider": {"type": "string", "enum": ["claude", "sambanova"]}
  }
}
```

### MCP Message Examples

**Initialize:**
```json
{
  "jsonrpc": "2.0",
  "id": "1",
  "method": "initialize",
  "params": {}
}
```

**List Tools:**
```json
{
  "jsonrpc": "2.0",
  "id": "2",
  "method": "tools/list"
}
```

**Call Tool:**
```json
{
  "jsonrpc": "2.0",
  "id": "3",
  "method": "tools/call",
  "params": {
    "name": "get_ai_analysis",
    "arguments": {
      "analysis_data": {...},
      "user_question": "How can I save money?",
      "provider": "claude"
    }
  }
}
```

## Local Python API

### SpendAnalyzer Class

```python
from spend_analyzer import SpendAnalyzer

analyzer = SpendAnalyzer()

# Load transactions
analyzer.load_transactions(transactions_list)

# Set budgets
analyzer.set_budgets({
    "Food & Dining": 500,
    "Shopping": 300,
    "Gas & Transport": 200
})

# Get insights
insights = analyzer.analyze_spending_by_category()
alerts = analyzer.check_budget_alerts()
summary = analyzer.generate_financial_summary()
recommendations = analyzer.get_spending_recommendations()

# Export all data
export_data = analyzer.export_analysis_data()
```

### EmailProcessor Class

```python
from email_processor import EmailProcessor

email_config = {
    "email": "[email protected]",
    "password": "app_password",
    "imap_server": "imap.gmail.com"
}

processor = EmailProcessor(email_config)

# Fetch emails
emails = await processor.fetch_bank_emails(days_back=30)

# Extract attachments
for email in emails:
    attachments = await processor.extract_attachments(email)
    for filename, content, file_type in attachments:
        if file_type == 'pdf':
            # Process PDF
            pass
```

### PDFProcessor Class

```python
from email_processor import PDFProcessor

processor = PDFProcessor()

# Process PDF
with open("statement.pdf", "rb") as f:
    pdf_content = f.read()

statement_info = await processor.process_pdf(pdf_content, password="optional")

print(f"Bank: {statement_info.bank_name}")
print(f"Account: {statement_info.account_number}")
print(f"Transactions: {len(statement_info.transactions)}")
```

## Data Formats

### Transaction Format

```python
{
    "date": "2024-01-15T00:00:00",
    "description": "Amazon Purchase",
    "amount": -45.67,
    "category": "Shopping",
    "account": "****1234",
    "balance": 1500.33
}
```

### Financial Summary Format

```python
{
    "total_income": 3000.0,
    "total_expenses": 1500.0,
    "net_cash_flow": 1500.0,
    "largest_expense": {
        "amount": 200.0,
        "description": "Grocery Store",
        "date": "2024-01-15",
        "category": "Food & Dining"
    },
    "most_frequent_category": "Food & Dining",
    "unusual_transactions": [...],
    "monthly_trends": {...}
}
```

### Spending Insight Format

```python
{
    "category": "Food & Dining",
    "total_amount": 500.0,
    "transaction_count": 15,
    "average_transaction": 33.33,
    "percentage_of_total": 33.3,
    "trend": "increasing",
    "top_merchants": ["Restaurant A", "Grocery Store", "Cafe B"]
}
```

### Budget Alert Format

```python
{
    "category": "Food & Dining",
    "budget_limit": 500.0,
    "current_spending": 450.0,
    "percentage_used": 90.0,
    "alert_level": "warning",
    "days_remaining": 10
}
```

## Error Handling

### Common Error Responses

**Authentication Error:**
```python
{
    "error": "Invalid API key or authentication failed",
    "code": "AUTH_ERROR"
}
```

**PDF Password Error:**
```python
{
    "error": "PDF requires password",
    "code": "PASSWORD_REQUIRED",
    "filename": "statement.pdf"
}
```

**Processing Error:**
```python
{
    "error": "Failed to parse PDF content",
    "code": "PARSE_ERROR",
    "details": "Unsupported PDF format"
}
```

**Rate Limit Error:**
```python
{
    "error": "API rate limit exceeded",
    "code": "RATE_LIMIT",
    "retry_after": 60
}
```

### Error Handling Best Practices

1. **Always check for errors** in API responses
2. **Implement retry logic** for transient failures
3. **Handle password-protected PDFs** gracefully
4. **Monitor API usage** to avoid rate limits
5. **Log errors** for debugging

## Examples

### Complete Workflow Example

```python
import modal
import asyncio

async def analyze_finances():
    # Connect to Modal app
    app = modal.App.lookup("spend-analyzer-mcp-bmt")
    
    # Process email statements
    email_config = {
        "email": "[email protected]",
        "password": "app_password",
        "imap_server": "imap.gmail.com"
    }
    
    process_statements = app["process_bank_statements"]
    email_result = process_statements.remote(email_config, days_back=30)
    
    # Upload additional PDFs
    pdf_contents = {}
    with open("additional_statement.pdf", "rb") as f:
        pdf_contents["additional.pdf"] = f.read()
    
    analyze_pdfs = app["analyze_uploaded_statements"]
    pdf_result = analyze_pdfs.remote(pdf_contents)
    
    # Combine analysis data
    combined_analysis = {
        **email_result["analysis"],
        "additional_transactions": pdf_result["total_transactions"]
    }
    
    # Get AI analysis
    get_analysis = app["get_ai_analysis"]
    
    # Use Claude for detailed analysis
    claude_analysis = get_analysis.remote(
        combined_analysis,
        "Provide a comprehensive financial health assessment",
        "claude"
    )
    
    # Use SambaNova for quick insights
    sambanova_analysis = get_analysis.remote(
        combined_analysis,
        "What are my top 3 spending categories?",
        "sambanova"
    )
    
    print("Claude Analysis:", claude_analysis["ai_analysis"])
    print("SambaNova Analysis:", sambanova_analysis["ai_analysis"])

# Run the analysis
asyncio.run(analyze_finances())
```

### Integration with External Systems

```python
import requests
import json

def call_mcp_webhook(data):
    """Call the MCP webhook endpoint"""
    webhook_url = "https://your-modal-app.modal.run/mcp_webhook"
    
    mcp_message = {
        "jsonrpc": "2.0",
        "id": "1",
        "method": "tools/call",
        "params": {
            "name": "get_ai_analysis",
            "arguments": data
        }
    }
    
    response = requests.post(
        webhook_url,
        json=mcp_message,
        headers={"Content-Type": "application/json"}
    )
    
    return response.json()

# Use the webhook
analysis_data = {"spending_insights": [...]}
result = call_mcp_webhook(analysis_data)
```

## Rate Limits and Quotas

### Claude API
- **Rate Limit:** 1000 requests/minute
- **Token Limit:** 100K tokens/minute
- **Best Practice:** Use for complex analysis

### SambaNova API
- **Rate Limit:** 5000 requests/minute
- **Token Limit:** 500K tokens/minute
- **Best Practice:** Use for quick insights and batch processing

### Modal Functions
- **Concurrent Executions:** Auto-scaled
- **Timeout:** Configurable per function
- **Memory:** 2GB default for PDF processing

## Support and Troubleshooting

### Common Issues

1. **PDF Processing Fails**
   - Check PDF format compatibility
   - Verify password if protected
   - Ensure sufficient memory allocation

2. **Email Connection Issues**
   - Use app-specific passwords
   - Verify IMAP server settings
   - Check firewall/network restrictions

3. **AI API Errors**
   - Verify API keys are valid
   - Check rate limits
   - Monitor token usage

### Getting Help

1. Check the logs: `modal logs spend-analyzer-mcp-bmt`
2. Review error messages and codes
3. Consult the deployment guide
4. Open an issue with detailed error information

For more detailed information, see the [DEPLOYMENT_GUIDE.md](DEPLOYMENT_GUIDE.md) file.