File size: 19,162 Bytes
499796e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
"""
Spend Analyzer - Financial Intelligence and Analysis Module
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
import json
from collections import defaultdict
import logging
@dataclass
class SpendingInsight:
category: str
total_amount: float
transaction_count: int
average_transaction: float
percentage_of_total: float
trend: str # 'increasing', 'decreasing', 'stable'
top_merchants: List[str]
@dataclass
class BudgetAlert:
category: str
budget_limit: float
current_spending: float
percentage_used: float
alert_level: str # 'warning', 'critical', 'info'
days_remaining: int
@dataclass
class FinancialSummary:
total_income: float
total_expenses: float
net_cash_flow: float
largest_expense: Dict
most_frequent_category: str
unusual_transactions: List[Dict]
monthly_trends: Dict[str, float]
class SpendAnalyzer:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.transactions_df = pd.DataFrame()
self.budgets = {}
def load_transactions(self, transactions: List) -> None:
"""Load transactions into pandas DataFrame for analysis"""
try:
# Convert transactions to DataFrame
data = []
for trans in transactions:
if hasattr(trans, '__dict__'):
data.append(asdict(trans))
else:
data.append(trans)
self.transactions_df = pd.DataFrame(data)
if not self.transactions_df.empty:
# Ensure date column is datetime
self.transactions_df['date'] = pd.to_datetime(self.transactions_df['date'])
# Sort by date
self.transactions_df = self.transactions_df.sort_values('date')
# Add derived columns
self.transactions_df['month'] = self.transactions_df['date'].dt.to_period('M')
self.transactions_df['week'] = self.transactions_df['date'].dt.to_period('W')
self.transactions_df['day_of_week'] = self.transactions_df['date'].dt.day_name()
self.logger.info(f"Loaded {len(self.transactions_df)} transactions")
except Exception as e:
self.logger.error(f"Error loading transactions: {e}")
raise
def set_budgets(self, budgets: Dict[str, float]) -> None:
"""Set budget limits for categories"""
self.budgets = budgets
def analyze_spending_by_category(self, months_back: int = 6) -> List[SpendingInsight]:
"""Analyze spending patterns by category"""
if self.transactions_df.empty:
return []
# Filter to recent months
cutoff_date = datetime.now() - timedelta(days=months_back * 30)
recent_df = self.transactions_df[self.transactions_df['date'] >= cutoff_date]
# Filter only expenses (negative amounts)
expenses_df = recent_df[recent_df['amount'] < 0].copy()
expenses_df['amount'] = expenses_df['amount'].abs() # Make positive for analysis
insights = []
total_spending = expenses_df['amount'].sum()
if total_spending == 0:
self.logger.warning("Total spending is zero; no insights can be generated.")
return insights
# Group by category
category_stats = expenses_df.groupby('category').agg({
'amount': ['sum', 'count', 'mean'],
'description': lambda x: list(x.value_counts().head(3).index)
}).round(2)
category_stats.columns = ['total', 'count', 'average', 'top_merchants']
for category, stats in category_stats.iterrows():
# Calculate trend
trend = self._calculate_trend(expenses_df, category)
insight = SpendingInsight(
category=category,
total_amount=stats['total'],
transaction_count=stats['count'],
average_transaction=stats['average'],
percentage_of_total=(stats['total'] / total_spending) * 100,
trend=trend,
top_merchants=stats['top_merchants'][:3]
)
insights.append(insight)
# Sort by total amount descending
insights.sort(key=lambda x: x.total_amount, reverse=True)
return insights
def _calculate_trend(self, df: pd.DataFrame, category: str) -> str:
"""Calculate spending trend for a category"""
try:
category_df = df[df['category'] == category]
monthly_spending = category_df.groupby('month')['amount'].sum()
if len(monthly_spending) < 2:
return 'stable'
# Calculate trend using linear regression slope
x = np.arange(len(monthly_spending))
y = monthly_spending.values
slope = np.polyfit(x, y, 1)[0]
if slope > 0.1:
return 'increasing'
elif slope < -0.1:
return 'decreasing'
else:
return 'stable'
except Exception:
return 'stable'
def check_budget_alerts(self) -> List[BudgetAlert]:
"""Check for budget alerts and overspending"""
if self.transactions_df.empty or not self.budgets:
return []
alerts = []
current_month = datetime.now().replace(day=1)
month_df = self.transactions_df[
(self.transactions_df['date'] >= current_month) &
(self.transactions_df['amount'] < 0) # Only expenses
].copy()
month_df['amount'] = month_df['amount'].abs()
# Days remaining in month
import calendar
days_in_month = calendar.monthrange(current_month.year, current_month.month)[1]
days_remaining = days_in_month - datetime.now().day
# Check each budget category
for category, budget_limit in self.budgets.items():
current_spending = month_df[month_df['category'] == category]['amount'].sum()
percentage_used = (current_spending / budget_limit) * 100
# Determine alert level
if percentage_used >= 100:
alert_level = 'critical'
elif percentage_used >= 80:
alert_level = 'warning'
else:
alert_level = 'info'
alert = BudgetAlert(
category=category,
budget_limit=budget_limit,
current_spending=current_spending,
percentage_used=percentage_used,
alert_level=alert_level,
days_remaining=days_remaining
)
alerts.append(alert)
return alerts
def generate_financial_summary(self) -> FinancialSummary:
"""Generate comprehensive financial summary"""
if self.transactions_df.empty:
return FinancialSummary(0, 0, 0, {}, "", [], {})
# Calculate basic metrics
income_df = self.transactions_df[self.transactions_df['amount'] > 0]
expense_df = self.transactions_df[self.transactions_df['amount'] < 0]
total_income = income_df['amount'].sum()
total_expenses = abs(expense_df['amount'].sum())
net_cash_flow = total_income - total_expenses
# Largest expense
if not expense_df.empty:
largest_expense_row = expense_df.loc[expense_df['amount'].idxmin()]
largest_expense = {
'amount': abs(largest_expense_row['amount']),
'description': largest_expense_row['description'],
'date': largest_expense_row['date'].strftime('%Y-%m-%d'),
'category': largest_expense_row['category']
}
else:
largest_expense = {}
# Most frequent category
most_frequent_category = expense_df['category'].mode().iloc[0] if not expense_df.empty else ""
# Unusual transactions (outliers)
unusual_transactions = self._detect_unusual_transactions()
# Monthly trends
monthly_trends = self._calculate_monthly_trends()
return FinancialSummary(
total_income=total_income,
total_expenses=total_expenses,
net_cash_flow=net_cash_flow,
largest_expense=largest_expense,
most_frequent_category=most_frequent_category,
unusual_transactions=unusual_transactions,
monthly_trends=monthly_trends
)
def _detect_unusual_transactions(self) -> List[Dict]:
"""Detect unusual transactions using statistical methods"""
if self.transactions_df.empty:
return []
unusual = []
# Detect amount outliers by category
for category in self.transactions_df['category'].unique():
category_df = self.transactions_df[
(self.transactions_df['category'] == category) &
(self.transactions_df['amount'] < 0)
].copy()
if len(category_df) < 5: # Need sufficient data
continue
amounts = category_df['amount'].abs()
Q1 = amounts.quantile(0.25)
Q3 = amounts.quantile(0.75)
IQR = Q3 - Q1
# Define outliers as values beyond 1.5 * IQR
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = category_df[(amounts < lower_bound) | (amounts > upper_bound)]
for _, row in outliers.iterrows():
unusual.append({
'date': row['date'].strftime('%Y-%m-%d'),
'description': row['description'],
'amount': abs(row['amount']),
'category': row['category'],
'reason': 'Amount significantly higher than usual for this category'
})
# Detect frequency outliers (multiple transactions same day/merchant)
daily_merchant = self.transactions_df.groupby([
self.transactions_df['date'].dt.date, 'description'
]).size()
frequent_same_day = daily_merchant[daily_merchant > 3]
for (date, merchant), count in frequent_same_day.items():
unusual.append({
'date': str(date),
'description': merchant,
'count': count,
'reason': f'{count} transactions with same merchant on same day'
})
return unusual[:10] # Return top 10 unusual transactions
def _calculate_monthly_trends(self) -> Dict[str, float]:
"""Calculate monthly spending trends"""
if self.transactions_df.empty:
return {}
# Get last 12 months of expense data
expense_df = self.transactions_df[self.transactions_df['amount'] < 0].copy()
expense_df['amount'] = expense_df['amount'].abs()
monthly_spending = expense_df.groupby('month')['amount'].sum()
# Get last 6 months for trend calculation
recent_months = monthly_spending.tail(6)
trends = {}
if len(recent_months) >= 2:
# Overall trend
x = np.arange(len(recent_months))
y = recent_months.values
slope = np.polyfit(x, y, 1)[0]
trends['overall_trend'] = slope
# Month-over-month change
if len(recent_months) >= 2:
current_month = recent_months.iloc[-1]
previous_month = recent_months.iloc[-2]
mom_change = ((current_month - previous_month) / previous_month) * 100
trends['month_over_month_change'] = mom_change
# Average monthly spending
trends['average_monthly'] = recent_months.mean()
trends['highest_month'] = recent_months.max()
trends['lowest_month'] = recent_months.min()
return trends
def predict_future_spending(self, months_ahead: int = 3) -> Dict[str, float]:
"""Predict future spending based on historical trends"""
if self.transactions_df.empty:
return {}
# Get historical monthly spending by category
expense_df = self.transactions_df[self.transactions_df['amount'] < 0].copy()
expense_df['amount'] = expense_df['amount'].abs()
monthly_category_spending = expense_df.groupby(['month', 'category'])['amount'].sum().unstack(fill_value=0)
predictions = {}
for category in monthly_category_spending.columns:
category_data = monthly_category_spending[category]
if len(category_data) >= 3: # Need at least 3 months of data
# Simple linear trend prediction
x = np.arange(len(category_data))
y = category_data.values
# Fit linear model
coeffs = np.polyfit(x, y, 1)
slope, intercept = coeffs
# Predict future months
future_months = []
for i in range(1, months_ahead + 1):
future_x = len(category_data) + i - 1
predicted_amount = slope * future_x + intercept
future_months.append(max(0, predicted_amount)) # Don't predict negative spending
predictions[category] = {
'next_month': future_months[0] if future_months else 0,
'total_predicted': sum(future_months),
'average_predicted': np.mean(future_months) if future_months else 0
}
return predictions
def get_spending_recommendations(self) -> List[str]:
"""Generate spending recommendations based on analysis"""
recommendations = []
if self.transactions_df.empty:
return ["No transaction data available for analysis"]
# Analyze spending patterns
insights = self.analyze_spending_by_category()
budget_alerts = self.check_budget_alerts()
summary = self.generate_financial_summary()
# Check for overspending categories
overspending_categories = [alert for alert in budget_alerts if alert.percentage_used > 100]
if overspending_categories:
for alert in overspending_categories:
recommendations.append(
f"You've exceeded your {alert.category} budget by "
f"${alert.current_spending - alert.budget_limit:.2f} this month. "
f"Consider reducing spending in this category."
)
# Check for high-spending categories
if insights:
top_category = insights[0]
if top_category.percentage_of_total > 40:
recommendations.append(
f"{top_category.category} accounts for {top_category.percentage_of_total:.1f}% "
f"of your spending. Consider if this allocation aligns with your priorities."
)
# Check cash flow
if summary.net_cash_flow < 0:
recommendations.append(
f"Your expenses (${summary.total_expenses:.2f}) exceed your income "
f"(${summary.total_income:.2f}) by ${abs(summary.net_cash_flow):.2f}. "
f"Focus on reducing expenses or increasing income."
)
# Check for increasing trends
increasing_categories = [i for i in insights if i.trend == 'increasing']
if increasing_categories:
top_increasing = increasing_categories[0]
recommendations.append(
f"Your {top_increasing.category} spending is trending upward. "
f"Monitor this category to avoid budget overruns."
)
# Unusual transaction patterns
if summary.unusual_transactions:
recommendations.append(
f"Found {len(summary.unusual_transactions)} unusual transactions. "
f"Review these for potential errors or unauthorized charges."
)
# Positive reinforcement
decreasing_categories = [i for i in insights if i.trend == 'decreasing']
if decreasing_categories:
recommendations.append(
f"Great job reducing {decreasing_categories[0].category} spending! "
f"This trend is helping improve your financial health."
)
if not recommendations:
recommendations.append("Your spending patterns look healthy. Keep up the good work!")
return recommendations
def export_analysis_data(self) -> Dict:
"""Export all analysis data for Claude API integration"""
return {
'spending_insights': [asdict(insight) for insight in self.analyze_spending_by_category()],
'budget_alerts': [asdict(alert) for alert in self.check_budget_alerts()],
'financial_summary': asdict(self.generate_financial_summary()),
'predictions': self.predict_future_spending(),
'recommendations': self.get_spending_recommendations(),
'transaction_count': len(self.transactions_df),
'analysis_date': datetime.now().isoformat()
}
# Example usage and testing
if __name__ == "__main__":
# Test the spend analyzer
analyzer = SpendAnalyzer()
# Sample transaction data for testing
sample_transactions = [
{
'date': datetime.now() - timedelta(days=5),
'description': 'Amazon Purchase',
'amount': -45.67,
'category': 'Shopping'
},
{
'date': datetime.now() - timedelta(days=10),
'description': 'Grocery Store',
'amount': -120.50,
'category': 'Food & Dining'
},
{
'date': datetime.now() - timedelta(days=15),
'description': 'Salary Deposit',
'amount': 3000.00,
'category': 'Income'
}
]
analyzer.load_transactions(sample_transactions)
analyzer.set_budgets({'Shopping': 100, 'Food & Dining': 200})
insights = analyzer.analyze_spending_by_category()
print(f"Generated {len(insights)} spending insights")
recommendations = analyzer.get_spending_recommendations()
print(f"Generated {len(recommendations)} recommendations") |