Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
-
from typing import List, Dict
|
| 4 |
from huggingface_hub import HfApi
|
| 5 |
import os
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
-
import csv
|
| 8 |
from pinecone import Pinecone
|
| 9 |
from openai import OpenAI
|
|
|
|
| 10 |
|
| 11 |
# Load environment variables
|
| 12 |
load_dotenv()
|
|
@@ -27,8 +27,6 @@ def keyword_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
|
| 27 |
Dictionary containing search results with MCP information
|
| 28 |
"""
|
| 29 |
try:
|
| 30 |
-
print(f"Debug - Search query: '{query}'") # Debug log
|
| 31 |
-
|
| 32 |
# Use list_spaces API with mcp-server filter and sort by likes
|
| 33 |
spaces = list(api.list_spaces(
|
| 34 |
search=query,
|
|
@@ -40,15 +38,35 @@ def keyword_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
|
| 40 |
results = []
|
| 41 |
for space in spaces[:limit]: # Process up to limit matches
|
| 42 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
space_info = {
|
| 44 |
"id": space.id,
|
| 45 |
"likes": space.likes,
|
| 46 |
"trending_score": space.trending_score,
|
| 47 |
-
"source": "huggingface"
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
results.append(space_info)
|
| 50 |
except Exception as e:
|
| 51 |
-
print(f"Error processing space {space.id}: {str(e)}")
|
| 52 |
continue
|
| 53 |
|
| 54 |
return {
|
|
@@ -56,20 +74,20 @@ def keyword_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
|
| 56 |
"total": len(results)
|
| 57 |
}
|
| 58 |
except Exception as e:
|
| 59 |
-
print(f"Debug - Critical error in keyword_search_hf_spaces: {str(e)}")
|
| 60 |
return {
|
| 61 |
"error": str(e),
|
| 62 |
"results": [],
|
| 63 |
"total": 0
|
| 64 |
}
|
| 65 |
|
| 66 |
-
def keyword_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
| 67 |
"""
|
| 68 |
Search for MCPs in Smithery Registry.
|
| 69 |
|
| 70 |
Args:
|
| 71 |
query: Search query string
|
| 72 |
limit: Maximum number of results to return (default: 3)
|
|
|
|
| 73 |
|
| 74 |
Returns:
|
| 75 |
Dictionary containing search results with MCP information
|
|
@@ -120,13 +138,72 @@ def keyword_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
|
| 120 |
servers = sorted(data.get('servers', []), key=lambda x: x.get('useCount', 0), reverse=True)[:limit]
|
| 121 |
|
| 122 |
for server in servers:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
server_info = {
|
| 124 |
-
"id":
|
| 125 |
"name": server.get('displayName'),
|
| 126 |
"description": server.get('description'),
|
| 127 |
"likes": server.get('useCount', 0),
|
| 128 |
-
"source": "smithery"
|
|
|
|
| 129 |
}
|
|
|
|
| 130 |
results.append(server_info)
|
| 131 |
|
| 132 |
return {
|
|
@@ -141,7 +218,7 @@ def keyword_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
|
| 141 |
"total": 0
|
| 142 |
}
|
| 143 |
|
| 144 |
-
def keyword_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
| 145 |
"""
|
| 146 |
Search for MCPs using keyword matching.
|
| 147 |
|
|
@@ -149,6 +226,7 @@ def keyword_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
|
| 149 |
query: Keyword search query
|
| 150 |
sources: List of sources to search from ('huggingface', 'smithery')
|
| 151 |
limit: Maximum number of results to return (default: 3)
|
|
|
|
| 152 |
|
| 153 |
Returns:
|
| 154 |
Dictionary containing combined search results
|
|
@@ -160,7 +238,7 @@ def keyword_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
|
| 160 |
all_results.extend(hf_results.get("results", []))
|
| 161 |
|
| 162 |
if "smithery" in sources:
|
| 163 |
-
smithery_results = keyword_search_smithery(query, limit)
|
| 164 |
all_results.extend(smithery_results.get("results", []))
|
| 165 |
|
| 166 |
return {
|
|
@@ -169,7 +247,7 @@ def keyword_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
|
| 169 |
"search_type": "keyword"
|
| 170 |
}
|
| 171 |
|
| 172 |
-
def
|
| 173 |
"""
|
| 174 |
Search for MCPs in Hugging Face Spaces using semantic embedding matching.
|
| 175 |
|
|
@@ -181,84 +259,100 @@ def embedding_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
|
| 181 |
Dictionary containing search results with MCP information
|
| 182 |
"""
|
| 183 |
try:
|
| 184 |
-
print("[DEBUG] embedding_search_hf_spaces called")
|
| 185 |
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
| 186 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
| 187 |
-
print(f"[DEBUG] pinecone_api_key exists: {pinecone_api_key is not None}, openai_api_key exists: {openai_api_key is not None}")
|
| 188 |
if not pinecone_api_key or not openai_api_key:
|
| 189 |
-
print("[ERROR] API keys not found")
|
| 190 |
return {
|
| 191 |
"error": "API keys not found",
|
| 192 |
"results": [],
|
| 193 |
"total": 0
|
| 194 |
}
|
| 195 |
-
|
| 196 |
pc = Pinecone(api_key=pinecone_api_key)
|
| 197 |
index = pc.Index("hf-mcp")
|
| 198 |
client = OpenAI(api_key=openai_api_key)
|
| 199 |
-
|
| 200 |
response = client.embeddings.create(
|
| 201 |
input=query,
|
| 202 |
model="text-embedding-3-large"
|
| 203 |
)
|
| 204 |
query_embedding = response.data[0].embedding
|
| 205 |
-
|
| 206 |
-
print("[DEBUG] Querying Pinecone index")
|
| 207 |
results = index.query(
|
| 208 |
namespace="",
|
| 209 |
vector=query_embedding,
|
| 210 |
top_k=limit
|
| 211 |
)
|
| 212 |
-
|
| 213 |
space_results = []
|
| 214 |
if not results.matches:
|
| 215 |
-
print("[DEBUG] No matches found in Pinecone results")
|
| 216 |
return {
|
| 217 |
"results": [],
|
| 218 |
"total": 0
|
| 219 |
}
|
|
|
|
| 220 |
for match in results.matches:
|
| 221 |
space_id = match.id
|
| 222 |
try:
|
| 223 |
repo_id = space_id.replace('spaces/', '')
|
| 224 |
-
print(f"[DEBUG] Fetching space info for repo_id: {repo_id}")
|
| 225 |
space = api.space_info(repo_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
space_info = {
|
| 227 |
"id": space.id,
|
| 228 |
"likes": space.likes,
|
| 229 |
"trending_score": space.trending_score,
|
| 230 |
"source": "huggingface",
|
| 231 |
-
"score": match.score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
}
|
| 233 |
space_results.append(space_info)
|
| 234 |
except Exception as e:
|
| 235 |
-
print(f"[ERROR] Error fetching space info for {space_id}: {str(e)}")
|
| 236 |
continue
|
|
|
|
| 237 |
return {
|
| 238 |
"results": space_results,
|
| 239 |
"total": len(space_results)
|
| 240 |
}
|
| 241 |
except Exception as e:
|
| 242 |
-
print(f"[CRITICAL ERROR] in embedding_search_hf_spaces: {str(e)}")
|
| 243 |
return {
|
| 244 |
"error": str(e),
|
| 245 |
"results": [],
|
| 246 |
"total": 0
|
| 247 |
}
|
| 248 |
|
| 249 |
-
def
|
| 250 |
"""
|
| 251 |
Search for MCPs in Smithery Registry using semantic embedding matching.
|
| 252 |
|
| 253 |
Args:
|
| 254 |
query: Natural language search query
|
| 255 |
limit: Maximum number of results to return (default: 3)
|
|
|
|
| 256 |
|
| 257 |
Returns:
|
| 258 |
Dictionary containing search results with MCP information
|
| 259 |
"""
|
| 260 |
try:
|
| 261 |
-
print("[DEBUG] embedding_search_smithery called")
|
| 262 |
from pinecone import Pinecone
|
| 263 |
from openai import OpenAI
|
| 264 |
import os
|
|
@@ -266,39 +360,37 @@ def embedding_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
|
| 266 |
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
| 267 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
| 268 |
smithery_token = os.getenv('SMITHERY_TOKEN')
|
| 269 |
-
|
| 270 |
if not pinecone_api_key or not openai_api_key or not smithery_token:
|
| 271 |
-
print("[ERROR] API keys not found")
|
| 272 |
return {
|
| 273 |
"error": "API keys not found",
|
| 274 |
"results": [],
|
| 275 |
"total": 0
|
| 276 |
}
|
| 277 |
-
|
| 278 |
pc = Pinecone(api_key=pinecone_api_key)
|
| 279 |
index = pc.Index("smithery-mcp")
|
| 280 |
client = OpenAI(api_key=openai_api_key)
|
| 281 |
-
|
| 282 |
response = client.embeddings.create(
|
| 283 |
input=query,
|
| 284 |
model="text-embedding-3-large"
|
| 285 |
)
|
| 286 |
query_embedding = response.data[0].embedding
|
| 287 |
-
|
| 288 |
-
print("[DEBUG] Querying Pinecone index")
|
| 289 |
results = index.query(
|
| 290 |
namespace="",
|
| 291 |
vector=query_embedding,
|
| 292 |
top_k=limit
|
| 293 |
)
|
| 294 |
-
|
| 295 |
server_results = []
|
| 296 |
if not results.matches:
|
| 297 |
-
print("[DEBUG] No matches found in Pinecone results")
|
| 298 |
return {
|
| 299 |
"results": [],
|
| 300 |
"total": 0
|
| 301 |
}
|
|
|
|
| 302 |
headers = {
|
| 303 |
'Authorization': f'Bearer {smithery_token}'
|
| 304 |
}
|
|
@@ -306,40 +398,96 @@ def embedding_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
|
| 306 |
for match in results.matches:
|
| 307 |
server_id = match.id
|
| 308 |
try:
|
| 309 |
-
print(f"[DEBUG] Fetching server info for server_id: {server_id}")
|
| 310 |
response = requests.get(
|
| 311 |
f'https://registry.smithery.ai/servers/{server_id}',
|
| 312 |
headers=headers
|
| 313 |
)
|
| 314 |
if response.status_code != 200:
|
| 315 |
-
print(f"[ERROR] Smithery API error for {server_id}: {response.status_code}")
|
| 316 |
continue
|
|
|
|
| 317 |
server = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
server_info = {
|
| 319 |
-
"id":
|
| 320 |
"name": server.get('displayName'),
|
| 321 |
"description": server.get('description'),
|
| 322 |
"likes": server.get('useCount', 0),
|
| 323 |
"source": "smithery",
|
| 324 |
-
"score": match.score
|
|
|
|
| 325 |
}
|
| 326 |
server_results.append(server_info)
|
| 327 |
except Exception as e:
|
| 328 |
-
print(f"[ERROR] Error fetching server info for {server_id}: {str(e)}")
|
| 329 |
continue
|
|
|
|
| 330 |
return {
|
| 331 |
"results": server_results,
|
| 332 |
"total": len(server_results)
|
| 333 |
}
|
| 334 |
except Exception as e:
|
| 335 |
-
print(f"[CRITICAL ERROR] in embedding_search_smithery: {str(e)}")
|
| 336 |
return {
|
| 337 |
"error": str(e),
|
| 338 |
"results": [],
|
| 339 |
"total": 0
|
| 340 |
}
|
| 341 |
|
| 342 |
-
def
|
| 343 |
"""
|
| 344 |
Search for MCPs using semantic embedding matching.
|
| 345 |
|
|
@@ -347,6 +495,7 @@ def embedding_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
|
| 347 |
query: Natural language search query
|
| 348 |
sources: List of sources to search from ('huggingface', 'smithery')
|
| 349 |
limit: Maximum number of results to return (default: 3)
|
|
|
|
| 350 |
|
| 351 |
Returns:
|
| 352 |
Dictionary containing combined search results
|
|
@@ -355,7 +504,7 @@ def embedding_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
|
| 355 |
|
| 356 |
if "huggingface" in sources:
|
| 357 |
try:
|
| 358 |
-
hf_results =
|
| 359 |
all_results.extend(hf_results.get("results", []))
|
| 360 |
except Exception as e:
|
| 361 |
# Fallback to keyword search if vector search fails
|
|
@@ -364,34 +513,105 @@ def embedding_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
|
| 364 |
|
| 365 |
if "smithery" in sources:
|
| 366 |
try:
|
| 367 |
-
smithery_results =
|
| 368 |
all_results.extend(smithery_results.get("results", []))
|
| 369 |
except Exception as e:
|
| 370 |
# Fallback to keyword search if vector search fails
|
| 371 |
-
smithery_results = keyword_search_smithery(query, limit)
|
| 372 |
all_results.extend(smithery_results.get("results", []))
|
| 373 |
|
| 374 |
return {
|
| 375 |
"results": all_results,
|
| 376 |
"total": len(all_results),
|
| 377 |
-
"search_type": "
|
| 378 |
}
|
| 379 |
|
| 380 |
# Create the Gradio interface
|
| 381 |
with gr.Blocks(title="🚦 Router MCP", css="""
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
}
|
| 386 |
-
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
}
|
| 389 |
""") as demo:
|
| 390 |
-
gr.
|
| 391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
with gr.Row():
|
| 394 |
with gr.Column():
|
|
|
|
| 395 |
query_input = gr.Textbox(
|
| 396 |
label="Describe the MCP Server you're looking for",
|
| 397 |
placeholder="e.g., 'I need an MCP Server that can generate images'"
|
|
@@ -410,79 +630,88 @@ with gr.Blocks(title="🚦 Router MCP", css="""
|
|
| 410 |
step=1
|
| 411 |
)
|
| 412 |
|
| 413 |
-
gr.Markdown("### Select your
|
| 414 |
client_radio = gr.Radio(
|
| 415 |
-
choices=["
|
| 416 |
-
label="",
|
| 417 |
-
value="
|
| 418 |
interactive=True,
|
| 419 |
elem_id="client_radio"
|
| 420 |
)
|
| 421 |
|
| 422 |
with gr.Row():
|
| 423 |
keyword_search_button = gr.Button("Keyword Search")
|
| 424 |
-
|
| 425 |
|
| 426 |
with gr.Column():
|
| 427 |
-
results_output = gr.JSON(
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
# Set up event handlers
|
| 430 |
def get_sources():
|
| 431 |
return ["huggingface" if hf_checkbox.value else "", "smithery" if smithery_checkbox.value else ""]
|
| 432 |
|
| 433 |
-
def handle_keyword_mcp_search(query: str, hf: bool, sm: bool, limit: int) -> Dict:
|
| 434 |
"""
|
| 435 |
Handle keyword-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
|
|
|
| 436 |
|
| 437 |
Args:
|
| 438 |
query (str): The search query string to find matching MCP servers
|
| 439 |
-
hf (bool): Whether to include Hugging Face Spaces in the search
|
| 440 |
-
sm (bool): Whether to include Smithery in the search
|
| 441 |
-
limit (int): Maximum number of results to return per source
|
|
|
|
| 442 |
|
| 443 |
Returns:
|
| 444 |
Dict: A dictionary containing the search results with the following keys:
|
| 445 |
-
- results: List of found MCP servers
|
| 446 |
- total: Total number of results
|
| 447 |
- search_type: Type of search performed ("keyword")
|
| 448 |
"""
|
| 449 |
return keyword_search(
|
| 450 |
query,
|
| 451 |
["huggingface" if hf else "", "smithery" if sm else ""],
|
| 452 |
-
int(limit)
|
|
|
|
| 453 |
)
|
| 454 |
|
| 455 |
-
def
|
| 456 |
"""
|
| 457 |
Handle semantic embedding-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
|
|
|
| 458 |
|
| 459 |
Args:
|
| 460 |
query (str): The natural language search query to find semantically similar MCP servers
|
| 461 |
-
hf (bool): Whether to include Hugging Face Spaces in the search
|
| 462 |
-
sm (bool): Whether to include Smithery in the search
|
| 463 |
-
limit (int): Maximum number of results to return per source
|
|
|
|
| 464 |
|
| 465 |
Returns:
|
| 466 |
Dict: A dictionary containing the search results with the following keys:
|
| 467 |
-
- results: List of found MCP servers with similarity scores
|
| 468 |
- total: Total number of results
|
| 469 |
-
- search_type: Type of search performed ("
|
| 470 |
"""
|
| 471 |
-
return
|
| 472 |
query,
|
| 473 |
["huggingface" if hf else "", "smithery" if sm else ""],
|
| 474 |
-
int(limit)
|
|
|
|
| 475 |
)
|
| 476 |
|
| 477 |
keyword_search_button.click(
|
| 478 |
fn=handle_keyword_mcp_search,
|
| 479 |
-
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
| 480 |
outputs=results_output
|
| 481 |
)
|
| 482 |
|
| 483 |
-
|
| 484 |
-
fn=
|
| 485 |
-
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
| 486 |
outputs=results_output
|
| 487 |
)
|
| 488 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
+
from typing import List, Dict
|
| 4 |
from huggingface_hub import HfApi
|
| 5 |
import os
|
| 6 |
from dotenv import load_dotenv
|
|
|
|
| 7 |
from pinecone import Pinecone
|
| 8 |
from openai import OpenAI
|
| 9 |
+
import re
|
| 10 |
|
| 11 |
# Load environment variables
|
| 12 |
load_dotenv()
|
|
|
|
| 27 |
Dictionary containing search results with MCP information
|
| 28 |
"""
|
| 29 |
try:
|
|
|
|
|
|
|
| 30 |
# Use list_spaces API with mcp-server filter and sort by likes
|
| 31 |
spaces = list(api.list_spaces(
|
| 32 |
search=query,
|
|
|
|
| 38 |
results = []
|
| 39 |
for space in spaces[:limit]: # Process up to limit matches
|
| 40 |
try:
|
| 41 |
+
# Convert space ID to URL format - replace all special chars with hyphens
|
| 42 |
+
space_id_lower = re.sub(r'[^a-z0-9]', '-', space.id.lower())
|
| 43 |
+
# Remove consecutive hyphens
|
| 44 |
+
space_id_lower = re.sub(r'-+', '-', space_id_lower)
|
| 45 |
+
# Remove leading and trailing hyphens
|
| 46 |
+
space_id_lower = space_id_lower.strip('-')
|
| 47 |
+
sse_url = f"https://{space_id_lower}.hf.space/gradio_api/mcp/sse"
|
| 48 |
+
|
| 49 |
space_info = {
|
| 50 |
"id": space.id,
|
| 51 |
"likes": space.likes,
|
| 52 |
"trending_score": space.trending_score,
|
| 53 |
+
"source": "huggingface",
|
| 54 |
+
"configuration": {
|
| 55 |
+
"mcpServers": {
|
| 56 |
+
"gradio": {
|
| 57 |
+
"command": "npx", # Use npx to run MCP-Remote
|
| 58 |
+
"args": [
|
| 59 |
+
"mcp-remote",
|
| 60 |
+
sse_url,
|
| 61 |
+
"--transport",
|
| 62 |
+
"sse-only"
|
| 63 |
+
]
|
| 64 |
+
}
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
results.append(space_info)
|
| 69 |
except Exception as e:
|
|
|
|
| 70 |
continue
|
| 71 |
|
| 72 |
return {
|
|
|
|
| 74 |
"total": len(results)
|
| 75 |
}
|
| 76 |
except Exception as e:
|
|
|
|
| 77 |
return {
|
| 78 |
"error": str(e),
|
| 79 |
"results": [],
|
| 80 |
"total": 0
|
| 81 |
}
|
| 82 |
|
| 83 |
+
def keyword_search_smithery(query: str = "", limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
|
| 84 |
"""
|
| 85 |
Search for MCPs in Smithery Registry.
|
| 86 |
|
| 87 |
Args:
|
| 88 |
query: Search query string
|
| 89 |
limit: Maximum number of results to return (default: 3)
|
| 90 |
+
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
|
| 91 |
|
| 92 |
Returns:
|
| 93 |
Dictionary containing search results with MCP information
|
|
|
|
| 138 |
servers = sorted(data.get('servers', []), key=lambda x: x.get('useCount', 0), reverse=True)[:limit]
|
| 139 |
|
| 140 |
for server in servers:
|
| 141 |
+
server_id = server.get('qualifiedName')
|
| 142 |
+
# Extract server ID without @author/ prefix for configuration
|
| 143 |
+
config_server_id = server_id.split('/')[-1] if '/' in server_id else server_id
|
| 144 |
+
|
| 145 |
+
# Create configuration based on OS type
|
| 146 |
+
if os_type == "Mac/Linux":
|
| 147 |
+
configuration = {
|
| 148 |
+
"mcpServers": {
|
| 149 |
+
f"{config_server_id}": {
|
| 150 |
+
"command": "npx",
|
| 151 |
+
"args": [
|
| 152 |
+
"-y",
|
| 153 |
+
"@smithery/cli@latest",
|
| 154 |
+
"run",
|
| 155 |
+
f"{server_id}",
|
| 156 |
+
"--key",
|
| 157 |
+
"YOUR_SMITHERY_KEY"
|
| 158 |
+
]
|
| 159 |
+
}
|
| 160 |
+
}
|
| 161 |
+
}
|
| 162 |
+
elif os_type == "Windows":
|
| 163 |
+
configuration = {
|
| 164 |
+
"mcpServers": {
|
| 165 |
+
f"{config_server_id}": {
|
| 166 |
+
"command": "cmd",
|
| 167 |
+
"args": [
|
| 168 |
+
"/c",
|
| 169 |
+
"npx",
|
| 170 |
+
"-y",
|
| 171 |
+
"@smithery/cli@latest",
|
| 172 |
+
"run",
|
| 173 |
+
f"{server_id}",
|
| 174 |
+
"--key",
|
| 175 |
+
"YOUR_SMITHERY_KEY"
|
| 176 |
+
]
|
| 177 |
+
}
|
| 178 |
+
}
|
| 179 |
+
}
|
| 180 |
+
elif os_type == "WSL":
|
| 181 |
+
configuration = {
|
| 182 |
+
"mcpServers": {
|
| 183 |
+
f"{config_server_id}": {
|
| 184 |
+
"command": "wsl",
|
| 185 |
+
"args": [
|
| 186 |
+
"npx",
|
| 187 |
+
"-y",
|
| 188 |
+
"@smithery/cli@latest",
|
| 189 |
+
"run",
|
| 190 |
+
f"{server_id}",
|
| 191 |
+
"--key",
|
| 192 |
+
"YOUR_SMITHERY_KEY"
|
| 193 |
+
]
|
| 194 |
+
}
|
| 195 |
+
}
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
server_info = {
|
| 199 |
+
"id": server_id,
|
| 200 |
"name": server.get('displayName'),
|
| 201 |
"description": server.get('description'),
|
| 202 |
"likes": server.get('useCount', 0),
|
| 203 |
+
"source": "smithery",
|
| 204 |
+
"configuration": configuration
|
| 205 |
}
|
| 206 |
+
|
| 207 |
results.append(server_info)
|
| 208 |
|
| 209 |
return {
|
|
|
|
| 218 |
"total": 0
|
| 219 |
}
|
| 220 |
|
| 221 |
+
def keyword_search(query: str, sources: List[str], limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
|
| 222 |
"""
|
| 223 |
Search for MCPs using keyword matching.
|
| 224 |
|
|
|
|
| 226 |
query: Keyword search query
|
| 227 |
sources: List of sources to search from ('huggingface', 'smithery')
|
| 228 |
limit: Maximum number of results to return (default: 3)
|
| 229 |
+
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
|
| 230 |
|
| 231 |
Returns:
|
| 232 |
Dictionary containing combined search results
|
|
|
|
| 238 |
all_results.extend(hf_results.get("results", []))
|
| 239 |
|
| 240 |
if "smithery" in sources:
|
| 241 |
+
smithery_results = keyword_search_smithery(query, limit, os_type)
|
| 242 |
all_results.extend(smithery_results.get("results", []))
|
| 243 |
|
| 244 |
return {
|
|
|
|
| 247 |
"search_type": "keyword"
|
| 248 |
}
|
| 249 |
|
| 250 |
+
def semantic_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
| 251 |
"""
|
| 252 |
Search for MCPs in Hugging Face Spaces using semantic embedding matching.
|
| 253 |
|
|
|
|
| 259 |
Dictionary containing search results with MCP information
|
| 260 |
"""
|
| 261 |
try:
|
|
|
|
| 262 |
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
| 263 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
|
|
|
| 264 |
if not pinecone_api_key or not openai_api_key:
|
|
|
|
| 265 |
return {
|
| 266 |
"error": "API keys not found",
|
| 267 |
"results": [],
|
| 268 |
"total": 0
|
| 269 |
}
|
| 270 |
+
|
| 271 |
pc = Pinecone(api_key=pinecone_api_key)
|
| 272 |
index = pc.Index("hf-mcp")
|
| 273 |
client = OpenAI(api_key=openai_api_key)
|
| 274 |
+
|
| 275 |
response = client.embeddings.create(
|
| 276 |
input=query,
|
| 277 |
model="text-embedding-3-large"
|
| 278 |
)
|
| 279 |
query_embedding = response.data[0].embedding
|
| 280 |
+
|
|
|
|
| 281 |
results = index.query(
|
| 282 |
namespace="",
|
| 283 |
vector=query_embedding,
|
| 284 |
top_k=limit
|
| 285 |
)
|
| 286 |
+
|
| 287 |
space_results = []
|
| 288 |
if not results.matches:
|
|
|
|
| 289 |
return {
|
| 290 |
"results": [],
|
| 291 |
"total": 0
|
| 292 |
}
|
| 293 |
+
|
| 294 |
for match in results.matches:
|
| 295 |
space_id = match.id
|
| 296 |
try:
|
| 297 |
repo_id = space_id.replace('spaces/', '')
|
|
|
|
| 298 |
space = api.space_info(repo_id)
|
| 299 |
+
|
| 300 |
+
# Convert space ID to URL format - replace all special chars with hyphens
|
| 301 |
+
space_id_lower = re.sub(r'[^a-z0-9]', '-', space.id.lower())
|
| 302 |
+
# Remove consecutive hyphens
|
| 303 |
+
space_id_lower = re.sub(r'-+', '-', space_id_lower)
|
| 304 |
+
# Remove leading and trailing hyphens
|
| 305 |
+
space_id_lower = space_id_lower.strip('-')
|
| 306 |
+
sse_url = f"https://{space_id_lower}.hf.space/gradio_api/mcp/sse"
|
| 307 |
+
|
| 308 |
space_info = {
|
| 309 |
"id": space.id,
|
| 310 |
"likes": space.likes,
|
| 311 |
"trending_score": space.trending_score,
|
| 312 |
"source": "huggingface",
|
| 313 |
+
"score": match.score,
|
| 314 |
+
"configuration": {
|
| 315 |
+
"mcpServers": {
|
| 316 |
+
"gradio": {
|
| 317 |
+
"command": "npx",
|
| 318 |
+
"args": [
|
| 319 |
+
"mcp-remote",
|
| 320 |
+
sse_url,
|
| 321 |
+
"--transport",
|
| 322 |
+
"sse-only"
|
| 323 |
+
]
|
| 324 |
+
}
|
| 325 |
+
}
|
| 326 |
+
}
|
| 327 |
}
|
| 328 |
space_results.append(space_info)
|
| 329 |
except Exception as e:
|
|
|
|
| 330 |
continue
|
| 331 |
+
|
| 332 |
return {
|
| 333 |
"results": space_results,
|
| 334 |
"total": len(space_results)
|
| 335 |
}
|
| 336 |
except Exception as e:
|
|
|
|
| 337 |
return {
|
| 338 |
"error": str(e),
|
| 339 |
"results": [],
|
| 340 |
"total": 0
|
| 341 |
}
|
| 342 |
|
| 343 |
+
def semantic_search_smithery(query: str = "", limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
|
| 344 |
"""
|
| 345 |
Search for MCPs in Smithery Registry using semantic embedding matching.
|
| 346 |
|
| 347 |
Args:
|
| 348 |
query: Natural language search query
|
| 349 |
limit: Maximum number of results to return (default: 3)
|
| 350 |
+
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
|
| 351 |
|
| 352 |
Returns:
|
| 353 |
Dictionary containing search results with MCP information
|
| 354 |
"""
|
| 355 |
try:
|
|
|
|
| 356 |
from pinecone import Pinecone
|
| 357 |
from openai import OpenAI
|
| 358 |
import os
|
|
|
|
| 360 |
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
| 361 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
| 362 |
smithery_token = os.getenv('SMITHERY_TOKEN')
|
| 363 |
+
|
| 364 |
if not pinecone_api_key or not openai_api_key or not smithery_token:
|
|
|
|
| 365 |
return {
|
| 366 |
"error": "API keys not found",
|
| 367 |
"results": [],
|
| 368 |
"total": 0
|
| 369 |
}
|
| 370 |
+
|
| 371 |
pc = Pinecone(api_key=pinecone_api_key)
|
| 372 |
index = pc.Index("smithery-mcp")
|
| 373 |
client = OpenAI(api_key=openai_api_key)
|
| 374 |
+
|
| 375 |
response = client.embeddings.create(
|
| 376 |
input=query,
|
| 377 |
model="text-embedding-3-large"
|
| 378 |
)
|
| 379 |
query_embedding = response.data[0].embedding
|
| 380 |
+
|
|
|
|
| 381 |
results = index.query(
|
| 382 |
namespace="",
|
| 383 |
vector=query_embedding,
|
| 384 |
top_k=limit
|
| 385 |
)
|
| 386 |
+
|
| 387 |
server_results = []
|
| 388 |
if not results.matches:
|
|
|
|
| 389 |
return {
|
| 390 |
"results": [],
|
| 391 |
"total": 0
|
| 392 |
}
|
| 393 |
+
|
| 394 |
headers = {
|
| 395 |
'Authorization': f'Bearer {smithery_token}'
|
| 396 |
}
|
|
|
|
| 398 |
for match in results.matches:
|
| 399 |
server_id = match.id
|
| 400 |
try:
|
|
|
|
| 401 |
response = requests.get(
|
| 402 |
f'https://registry.smithery.ai/servers/{server_id}',
|
| 403 |
headers=headers
|
| 404 |
)
|
| 405 |
if response.status_code != 200:
|
|
|
|
| 406 |
continue
|
| 407 |
+
|
| 408 |
server = response.json()
|
| 409 |
+
|
| 410 |
+
# Extract server ID without @author/ prefix for configuration
|
| 411 |
+
config_server_id = server_id.split('/')[-1] if '/' in server_id else server_id
|
| 412 |
+
|
| 413 |
+
# Create configuration based on OS type
|
| 414 |
+
if os_type == "Mac/Linux":
|
| 415 |
+
configuration = {
|
| 416 |
+
"mcpServers": {
|
| 417 |
+
f"{config_server_id}": {
|
| 418 |
+
"command": "npx",
|
| 419 |
+
"args": [
|
| 420 |
+
"-y",
|
| 421 |
+
"@smithery/cli@latest",
|
| 422 |
+
"run",
|
| 423 |
+
f"{server_id}",
|
| 424 |
+
"--key",
|
| 425 |
+
"YOUR_SMITHERY_KEY"
|
| 426 |
+
]
|
| 427 |
+
}
|
| 428 |
+
}
|
| 429 |
+
}
|
| 430 |
+
elif os_type == "Windows":
|
| 431 |
+
configuration = {
|
| 432 |
+
"mcpServers": {
|
| 433 |
+
f"{config_server_id}": {
|
| 434 |
+
"command": "cmd",
|
| 435 |
+
"args": [
|
| 436 |
+
"/c",
|
| 437 |
+
"npx",
|
| 438 |
+
"-y",
|
| 439 |
+
"@smithery/cli@latest",
|
| 440 |
+
"run",
|
| 441 |
+
f"{server_id}",
|
| 442 |
+
"--key",
|
| 443 |
+
"YOUR_SMITHERY_KEY"
|
| 444 |
+
]
|
| 445 |
+
}
|
| 446 |
+
}
|
| 447 |
+
}
|
| 448 |
+
elif os_type == "WSL":
|
| 449 |
+
configuration = {
|
| 450 |
+
"mcpServers": {
|
| 451 |
+
f"{config_server_id}": {
|
| 452 |
+
"command": "wsl",
|
| 453 |
+
"args": [
|
| 454 |
+
"npx",
|
| 455 |
+
"-y",
|
| 456 |
+
"@smithery/cli@latest",
|
| 457 |
+
"run",
|
| 458 |
+
f"{server_id}",
|
| 459 |
+
"--key",
|
| 460 |
+
"YOUR_SMITHERY_KEY"
|
| 461 |
+
]
|
| 462 |
+
}
|
| 463 |
+
}
|
| 464 |
+
}
|
| 465 |
+
|
| 466 |
server_info = {
|
| 467 |
+
"id": server_id,
|
| 468 |
"name": server.get('displayName'),
|
| 469 |
"description": server.get('description'),
|
| 470 |
"likes": server.get('useCount', 0),
|
| 471 |
"source": "smithery",
|
| 472 |
+
"score": match.score,
|
| 473 |
+
"configuration": configuration
|
| 474 |
}
|
| 475 |
server_results.append(server_info)
|
| 476 |
except Exception as e:
|
|
|
|
| 477 |
continue
|
| 478 |
+
|
| 479 |
return {
|
| 480 |
"results": server_results,
|
| 481 |
"total": len(server_results)
|
| 482 |
}
|
| 483 |
except Exception as e:
|
|
|
|
| 484 |
return {
|
| 485 |
"error": str(e),
|
| 486 |
"results": [],
|
| 487 |
"total": 0
|
| 488 |
}
|
| 489 |
|
| 490 |
+
def semantic_search(query: str, sources: List[str], limit: int = 3, os_type: str = "Mac/Linux") -> Dict:
|
| 491 |
"""
|
| 492 |
Search for MCPs using semantic embedding matching.
|
| 493 |
|
|
|
|
| 495 |
query: Natural language search query
|
| 496 |
sources: List of sources to search from ('huggingface', 'smithery')
|
| 497 |
limit: Maximum number of results to return (default: 3)
|
| 498 |
+
os_type: Operating system type ("Mac/Linux", "Windows", "WSL")
|
| 499 |
|
| 500 |
Returns:
|
| 501 |
Dictionary containing combined search results
|
|
|
|
| 504 |
|
| 505 |
if "huggingface" in sources:
|
| 506 |
try:
|
| 507 |
+
hf_results = semantic_search_hf_spaces(query, limit)
|
| 508 |
all_results.extend(hf_results.get("results", []))
|
| 509 |
except Exception as e:
|
| 510 |
# Fallback to keyword search if vector search fails
|
|
|
|
| 513 |
|
| 514 |
if "smithery" in sources:
|
| 515 |
try:
|
| 516 |
+
smithery_results = semantic_search_smithery(query, limit, os_type)
|
| 517 |
all_results.extend(smithery_results.get("results", []))
|
| 518 |
except Exception as e:
|
| 519 |
# Fallback to keyword search if vector search fails
|
| 520 |
+
smithery_results = keyword_search_smithery(query, limit, os_type)
|
| 521 |
all_results.extend(smithery_results.get("results", []))
|
| 522 |
|
| 523 |
return {
|
| 524 |
"results": all_results,
|
| 525 |
"total": len(all_results),
|
| 526 |
+
"search_type": "semantic"
|
| 527 |
}
|
| 528 |
|
| 529 |
# Create the Gradio interface
|
| 530 |
with gr.Blocks(title="🚦 Router MCP", css="""
|
| 531 |
+
/* Make JSON output expanded by default */
|
| 532 |
+
.json-viewer-container {
|
| 533 |
+
display: block !important;
|
| 534 |
+
}
|
| 535 |
+
.json-viewer-container > .json-viewer-header {
|
| 536 |
+
display: none !important;
|
| 537 |
+
}
|
| 538 |
+
.json-viewer-container > .json-viewer-content {
|
| 539 |
+
display: block !important;
|
| 540 |
+
max-height: none !important;
|
| 541 |
+
}
|
| 542 |
+
.json-viewer-container .json-viewer-item {
|
| 543 |
+
display: block !important;
|
| 544 |
+
}
|
| 545 |
+
.json-viewer-container .json-viewer-item > .json-viewer-header {
|
| 546 |
+
display: none !important;
|
| 547 |
}
|
| 548 |
+
.json-viewer-container .json-viewer-item > .json-viewer-content {
|
| 549 |
+
display: block !important;
|
| 550 |
+
max-height: none !important;
|
| 551 |
+
}
|
| 552 |
+
/* Additional selectors for nested items */
|
| 553 |
+
.json-viewer-container .json-viewer-item .json-viewer-item {
|
| 554 |
+
display: block !important;
|
| 555 |
+
}
|
| 556 |
+
.json-viewer-container .json-viewer-item .json-viewer-item > .json-viewer-header {
|
| 557 |
+
display: none !important;
|
| 558 |
+
}
|
| 559 |
+
.json-viewer-container .json-viewer-item .json-viewer-item > .json-viewer-content {
|
| 560 |
+
display: block !important;
|
| 561 |
+
max-height: none !important;
|
| 562 |
+
}
|
| 563 |
+
/* Title styling */
|
| 564 |
+
.title-container {
|
| 565 |
+
text-align: center;
|
| 566 |
+
margin: 0.5rem 0;
|
| 567 |
+
position: relative;
|
| 568 |
+
padding: 0.5rem 0;
|
| 569 |
+
overflow: hidden;
|
| 570 |
+
}
|
| 571 |
+
.title-container h1 {
|
| 572 |
+
display: inline-block;
|
| 573 |
+
position: relative;
|
| 574 |
+
z-index: 1;
|
| 575 |
+
font-size: 1.8rem;
|
| 576 |
+
margin: 0;
|
| 577 |
+
line-height: 1.2;
|
| 578 |
+
mix-blend-mode: multiply;
|
| 579 |
+
}
|
| 580 |
+
.title-container p {
|
| 581 |
+
position: relative;
|
| 582 |
+
z-index: 1;
|
| 583 |
+
font-size: 1rem;
|
| 584 |
+
margin: 0.5rem 0 0 0;
|
| 585 |
+
color: #666;
|
| 586 |
+
mix-blend-mode: multiply;
|
| 587 |
+
}
|
| 588 |
+
.traffic-light {
|
| 589 |
+
position: absolute;
|
| 590 |
+
top: 50%;
|
| 591 |
+
left: 50%;
|
| 592 |
+
transform: translate(-50%, -50%);
|
| 593 |
+
width: 300px;
|
| 594 |
+
height: 40px;
|
| 595 |
+
background: linear-gradient(90deg,
|
| 596 |
+
rgba(255, 0, 0, 0.3) 0%,
|
| 597 |
+
rgba(255, 165, 0, 0.3) 50%,
|
| 598 |
+
rgba(0, 255, 0, 0.3) 100%
|
| 599 |
+
);
|
| 600 |
+
border-radius: 20px;
|
| 601 |
+
z-index: 0;
|
| 602 |
+
filter: blur(20px);
|
| 603 |
}
|
| 604 |
""") as demo:
|
| 605 |
+
with gr.Column(elem_classes=["title-container"]):
|
| 606 |
+
gr.HTML('''
|
| 607 |
+
<div class="traffic-light"></div>
|
| 608 |
+
<h1>🚦 Router MCP</h1>
|
| 609 |
+
<p>Your Gateway to Optimal MCP Servers in Seconds</p>
|
| 610 |
+
''')
|
| 611 |
|
| 612 |
with gr.Row():
|
| 613 |
with gr.Column():
|
| 614 |
+
gr.Markdown("### Search MCP servers using natural language query")
|
| 615 |
query_input = gr.Textbox(
|
| 616 |
label="Describe the MCP Server you're looking for",
|
| 617 |
placeholder="e.g., 'I need an MCP Server that can generate images'"
|
|
|
|
| 630 |
step=1
|
| 631 |
)
|
| 632 |
|
| 633 |
+
gr.Markdown("### Select your OS")
|
| 634 |
client_radio = gr.Radio(
|
| 635 |
+
choices=["Mac/Linux", "Windows", "WSL"],
|
| 636 |
+
label="Choose your operating system to get the appropriate command format",
|
| 637 |
+
value="Mac/Linux", # Default back to Mac/Linux
|
| 638 |
interactive=True,
|
| 639 |
elem_id="client_radio"
|
| 640 |
)
|
| 641 |
|
| 642 |
with gr.Row():
|
| 643 |
keyword_search_button = gr.Button("Keyword Search")
|
| 644 |
+
semantic_search_button = gr.Button("Semantic Search")
|
| 645 |
|
| 646 |
with gr.Column():
|
| 647 |
+
results_output = gr.JSON(
|
| 648 |
+
label="Search Results",
|
| 649 |
+
elem_id="results_output"
|
| 650 |
+
)
|
| 651 |
|
| 652 |
# Set up event handlers
|
| 653 |
def get_sources():
|
| 654 |
return ["huggingface" if hf_checkbox.value else "", "smithery" if smithery_checkbox.value else ""]
|
| 655 |
|
| 656 |
+
def handle_keyword_mcp_search(query: str, hf: bool, sm: bool, limit: int, os_type: str) -> Dict:
|
| 657 |
"""
|
| 658 |
Handle keyword-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
| 659 |
+
Use this search when you know the specific name or keywords of the MCP Server you're looking for.
|
| 660 |
|
| 661 |
Args:
|
| 662 |
query (str): The search query string to find matching MCP servers
|
| 663 |
+
hf (bool): Whether to include Hugging Face Spaces in the search
|
| 664 |
+
sm (bool): Whether to include Smithery in the search
|
| 665 |
+
limit (int): Maximum number of results to return per source
|
| 666 |
+
os_type (str): Operating system type ("Mac/Linux", "Windows", "WSL")
|
| 667 |
|
| 668 |
Returns:
|
| 669 |
Dict: A dictionary containing the search results with the following keys:
|
| 670 |
+
- results: List of found MCP servers with their configurations. Each configuration can be added to the MCP Client's config file to register the server.
|
| 671 |
- total: Total number of results
|
| 672 |
- search_type: Type of search performed ("keyword")
|
| 673 |
"""
|
| 674 |
return keyword_search(
|
| 675 |
query,
|
| 676 |
["huggingface" if hf else "", "smithery" if sm else ""],
|
| 677 |
+
int(limit),
|
| 678 |
+
os_type
|
| 679 |
)
|
| 680 |
|
| 681 |
+
def handle_semantic_mcp_search(query: str, hf: bool, sm: bool, limit: int, os_type: str) -> Dict:
|
| 682 |
"""
|
| 683 |
Handle semantic embedding-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
| 684 |
+
Use this search when your query is more abstract or conceptual, as it can understand the meaning and context of your request.
|
| 685 |
|
| 686 |
Args:
|
| 687 |
query (str): The natural language search query to find semantically similar MCP servers
|
| 688 |
+
hf (bool): Whether to include Hugging Face Spaces in the search
|
| 689 |
+
sm (bool): Whether to include Smithery in the search
|
| 690 |
+
limit (int): Maximum number of results to return per source
|
| 691 |
+
os_type (str): Operating system type ("Mac/Linux", "Windows", "WSL")
|
| 692 |
|
| 693 |
Returns:
|
| 694 |
Dict: A dictionary containing the search results with the following keys:
|
| 695 |
+
- results: List of found MCP servers with their configurations and similarity scores. Each configuration can be added to the MCP Client's config file to register the server.
|
| 696 |
- total: Total number of results
|
| 697 |
+
- search_type: Type of search performed ("semantic")
|
| 698 |
"""
|
| 699 |
+
return semantic_search(
|
| 700 |
query,
|
| 701 |
["huggingface" if hf else "", "smithery" if sm else ""],
|
| 702 |
+
int(limit),
|
| 703 |
+
os_type
|
| 704 |
)
|
| 705 |
|
| 706 |
keyword_search_button.click(
|
| 707 |
fn=handle_keyword_mcp_search,
|
| 708 |
+
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit, client_radio],
|
| 709 |
outputs=results_output
|
| 710 |
)
|
| 711 |
|
| 712 |
+
semantic_search_button.click(
|
| 713 |
+
fn=handle_semantic_mcp_search,
|
| 714 |
+
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit, client_radio],
|
| 715 |
outputs=results_output
|
| 716 |
)
|
| 717 |
|