File size: 6,996 Bytes
cdee5aa
e687f2e
 
bc39c76
cdee5aa
4cee86c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341288e
39ade08
4cee86c
9846f7e
cdee5aa
 
 
 
 
 
9846f7e
 
 
 
 
8807103
9846f7e
e687f2e
 
39ade08
 
 
e687f2e
9846f7e
e687f2e
 
 
 
 
 
 
 
341288e
e687f2e
9846f7e
 
 
 
cdee5aa
4cee86c
 
 
4b1f53c
 
517d30a
 
 
 
 
4b1f53c
517d30a
4b1f53c
cdee5aa
39ade08
02fc020
 
 
 
 
 
 
 
 
 
 
 
76ef126
 
 
 
 
02fc020
 
 
 
 
 
39ade08
cdee5aa
8807103
76ef126
02fc020
 
 
 
 
8807103
 
 
 
64e473e
 
 
9846f7e
 
 
 
64e473e
 
fe65a7d
64e473e
 
 
fe65a7d
 
9b89e2b
fe65a7d
39ade08
8807103
 
64e473e
517d30a
8807103
39ade08
 
 
 
 
8807103
 
 
39ade08
 
 
 
 
8807103
 
 
64e473e
517d30a
4cee86c
39ade08
 
 
4cee86c
 
39ade08
 
 
 
 
 
4cee86c
 
39ade08
9846f7e
39ade08
8807103
4cee86c
39ade08
 
 
8807103
 
4cee86c
 
4b1f53c
4cee86c
4b1f53c
4cee86c
 
 
 
 
8807103
 
 
 
 
4cee86c
 
 
 
8807103
 
 
 
 
 
 
 
 
 
 
 
cdee5aa
 
0f3f01d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import requests

MODAL_ENDPOINT = "https://kim-ju-won--mistral7b-chat-create-app.modal.run"

def create_system_prompt(agent_type, personality, expertise_level, language):
    base_prompt = f"""You are a {agent_type} movie recommendation agent with the following characteristics:
- Personality: {personality}
- Expertise Level: {expertise_level}
- Language: {language}

Your role is to:
1. Understand user preferences and mood
2. Provide personalized movie recommendations
3. Explain why you're recommending specific movies
4. Maintain a {personality} tone throughout the conversation
5. Consider the user's expertise level ({expertise_level}) when explaining

Please respond in {language}."""
    return base_prompt

def respond(message, history, agent_type, personality, expertise_level, language, genre, mood):
    system_message = create_system_prompt(agent_type, personality, expertise_level, language)

    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    genre_str = ", ".join(genre) if genre else "Any"
    mood_str = ", ".join(mood) if mood else "Any"

    enhanced_message = f"Genre: {genre_str}\nMood: {mood_str}\nUser request: {message}"
    messages.append({"role": "user", "content": enhanced_message})

    payload = {
        "messages": messages,
        "max_tokens": 512,
        "temperature": 0.7,
        "top_p": 0.95
    }

    try:
        response = requests.post(
            MODAL_ENDPOINT,
            json=payload,
            headers={"Content-Type": "application/json"}
        )
        response.raise_for_status()
        result = response.json()
        bot_reply = result.get("response", "Sorry, I couldn't process your request.")
    except Exception as e:
        bot_reply = f"Error: {str(e)}"

    history.append((message, bot_reply))
    return history

def reset_chat():
    return None

def show_settings_changed_info(agent_type, personality, expertise_level, language):
    return f"""
    New Agent Settings:
    - Type: {agent_type}
    - Personality: {personality}
    - Expertise Level: {expertise_level}
    - Response Language: {language}
    
    Chat has been reset. Please start a new conversation with the updated settings.
    """

custom_css = """
.header-container {
    text-align: center;
    margin-bottom: 20px;
}
.header-container img {
    width: 80px;
    margin-bottom: 10px;
    display: block;
    margin-left: auto;
    margin-right: auto;
}
.header-container h1 {
    display: inline-block;
    background: linear-gradient(90deg, #ff8a00, #e52e71, #9b00ff);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    font-weight: 900;
    margin: 0;
}
.header-container p {
    margin: 5px auto 0 auto;
    color: var(--body-text-color, #666);
    font-size: 1rem;
}
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    gr.HTML("""
    <div class="header-container">
        <h1>🎬 Personalized Movie Recommender</h1>
        <p><br/>Tell us your preferred genres and current mood, and we'll recommend the perfect movies for you.<br/></p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                height=600,
                show_copy_button=True,
                avatar_images=(
                    "https://cdn-icons-png.flaticon.com/512/149/149071.png",  # User Avatar
                    "https://cdn-icons-png.flaticon.com/512/3135/3135715.png"  # Bot Avatar
                ),
                bubble_full_width=False
            )
            with gr.Row(equal_height=True):
                msg = gr.Textbox(
                    placeholder="What kind of movie are you looking for?",
                    show_label=False,
                    container=False,
                    min_width=400
                )
                submit = gr.Button("Send Chat", variant="primary", min_width=100)
                clear = gr.Button("Clear Chat", variant="secondary", min_width=100)
        
        with gr.Column(scale=1):
            with gr.Group():
                gr.Markdown("### 🎯 Recommendation Settings")
                genre = gr.Dropdown(
                    choices=[
                        "🎬 Action", "πŸ˜‚ Comedy", "🎭 Drama", "πŸ’• Romance", 
                        "πŸ”ͺ Thriller", "πŸ‘½ Sci-Fi", "🧚 Fantasy", "🎨 Animation"
                    ],
                    label="Preferred Genres πŸŽ₯",
                    multiselect=True
                )
                mood = gr.Dropdown(
                    choices=[
                        "⚑ Exciting", "😭 Emotional", "😱 Suspenseful", 
                        "😌 Relaxing", "πŸ•΅οΈ Mysterious"
                    ],
                    label="Current Mood 🌈",
                    multiselect=True
                )
            
            with gr.Group():
                gr.Markdown("### πŸ€– Agent Settings")
                agent_type = gr.Dropdown(
                    choices=["πŸŽ“ Expert", "πŸ‘― Friend", "πŸŽ₯ Film Critic", "🎨 Curator"],
                    label="Agent Type πŸ§‘β€πŸ’Ό",
                    value="πŸŽ“ Expert"
                )
                personality = gr.Dropdown(
                    choices=[
                        "😊 Friendly", "πŸ’Ό Professional", "πŸ˜† Humorous", 
                        "πŸ₯Ί Emotional", "πŸ” Objective"
                    ],
                    label="Personality πŸ’«",
                    value="😊 Friendly"
                )
                expertise_level = gr.Dropdown(
                    choices=["🍼 Beginner", "πŸ“š Intermediate", "πŸ† Expert"],
                    label="Explanation Level πŸ“ˆ",
                    value="πŸ“š Intermediate"
                )
                language = gr.Dropdown(
                    choices=["πŸ‡¬πŸ‡§ English", "πŸ‡°πŸ‡· Korean", "πŸ‡―πŸ‡΅ Japanese"],
                    label="Response Language 🌐",
                    value="πŸ‡¬πŸ‡§ English"
                )

    for component in [agent_type, personality, expertise_level, language]:
        component.change(
            fn=show_settings_changed_info,
            inputs=[agent_type, personality, expertise_level, language],
            outputs=gr.Info()
        ).then(
            fn=reset_chat,
            outputs=chatbot
        )

    submit.click(
        respond,
        inputs=[
            msg,
            chatbot,
            agent_type,
            personality,
            expertise_level,
            language,
            genre,
            mood,
        ],
        outputs=chatbot,
    ).then(
        lambda: "",
        None,
        msg,
        queue=False
    )
    
    clear.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()