File size: 26,812 Bytes
5f8a43b 3ab62c4 5f8a43b 3ab62c4 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b 3f208e9 30dffe0 3f208e9 3ab62c4 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b 3f208e9 5f8a43b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import os
import gradio as gr
import time
import uuid
from typing import List, TypedDict, Annotated, Optional
from gradio.themes.base import Base
import pandas as pd
import altair as alt
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage, AIMessage, ToolMessage
from langchain_core.tools import tool
from langgraph.checkpoint.memory import InMemorySaver
from langgraph.graph.message import add_messages
from langgraph.graph import START, END, StateGraph
# Global df for sharing between functions
df = pd.DataFrame()
# --- Tool ---
@tool
def describe_schema() -> str:
"""
Describe the dataframe schema so you will have context how to processing it.
Do this before generating any plot if you are not sure about the columns,
can skip this if you already know about the columns and data types.
By knowing the schema, you can better understand how to instruct the plot creation.
"""
return str(df.dtypes)
@tool
def generate_plot_code(plot_instruction: str) -> dict:
"""
Given a plot_instruction not the direct Python code,
generate Python code that:
1. Performs aggregation/transformation on `df` (store in `df_agg`)
2. Generates a Altair plot from `df_agg` (store in `fig`)
Args:
plot_instruction (str): A description of the plot to generate, e.g. "Bar chart of total revenue by region".
Returns:
dict: A dictionary containing:
- `plot_instruction`: The original plot instruction.
- `code`: The generated Python code as a string.
- `chart`: The Altair chart object.
- `df_agg`: The aggregated DataFrame used for the plot.
"""
promt_generate_plot_code = """
You are a Python assistant. A pandas DataFrame `df` is available.
Your task:
1. Perform any necessary data processing or aggregation based on this request: "{plot_instruction}"
- Store the final df_agg in a variable called `df_agg`.
- When grouping data, always use `.reset_index()` after aggregation so the group keys remain columns in the df_agg.
2. Create a Altair plot from `df_agg`
- Only use the Altair library.
- Assign the chart to a variable named `chart`.
- Do NOT include explanations, comments, or markdown (like ```python).
- Use the existing DataFrame `df` directly.
- Just return executable Python code.
Rules:
- Do NOT create fake/sample data.
- Use only the real `df`.
- must create variable `df_agg` for the aggregated DataFrame.
- must create variable `chart` for the Altair chart.
- always show title and tooltip in the chart.
- No print statements or explanation โ just code.
- Be flexible interpreting column names:
- If the plot_instruction uses a partial or common term (e.g. "customer"), find the best matching column(s) in schema (like "customer_name").
- Normalize and expand synonyms or abbreviations to match columns.
- If multiple columns match, pick the most relevant one.
Example result:
import altair as alt
df_agg = df.groupby('region')['sales'].sum().reset_index().sort_values('sales', ascending=False)
chart = alt.Chart(df_agg).mark_bar().encode(
x='region:N',
y='sales:Q',
color=alt.Color('region:N', scale=alt.Scale(scheme='tableau10')),
tooltip=['region', 'sales']
).properties(
title='Top Sales per Region'
).transform_calculate(
text='datum.sales'
).mark_bar(
cornerRadiusTopLeft=3, cornerRadiusTopRight=3
)
"""
promt_generate_plot_code = promt_generate_plot_code.format(plot_instruction=plot_instruction)
try:
response = llm_plot.invoke([HumanMessage(content=promt_generate_plot_code)])
code = response.content.strip()
# Remove markdown fences if present
if code.startswith("```"):
lines = code.split("\n")
if lines[0].startswith("```"):
lines = lines[1:]
if lines[-1].startswith("```"):
lines = lines[:-1]
code = "\n".join(lines).strip()
interpretation = assistant_analysis(code,plot_instruction)
return {
"plot_instruction": plot_instruction,
"code": code,
"interpretation" : interpretation,
}
except Exception as e:
raise RuntimeError(f"Failed to generate plot: {e}")
@tool
def enhance_plot_code(previous_code: str, plot_instruction: str) -> dict:
"""
Given a previous code and plot_instruction not the direct Python code,
enhance Python code for graph that:
1. Performs aggregation/transformation on `df` (store in `df_agg`)
2. Generates a Altair plot from `df_agg` (store in `fig`)
3. Enhances the previous code based on the new plot_instruction
Args:
plot_instruction (str): A description of the plot to generate, e.g. "Bar chart of total revenue by region".
Returns:
dict: A dictionary containing:
- `plot_instruction`: The original plot instruction.
- `code`: The generated Python code as a string.
By running this tool, you are assume already show the plot to user, so do not say you cannot display the plot.
"""
prompt_enhance_plot_code = """
You are a Python assistant. A pandas DataFrame `df` is available.
You know the previous code that already generated a plot,
"{previous_code}"
Your task:
Enhance previous code based on this request:
"{plot_instruction}"
Rules:
- Do NOT create fake/sample data.
- Use only the real `df`.
- must create variable `df_agg` for the aggregated DataFrame.
- must create variable `chart` for the Altair chart.
- always show title and tooltip in the chart.
- No print statements or explanation โ just code.
- Be flexible interpreting column names:
- If the plot_instruction uses a partial or common term (e.g. "customer"), find the best matching column(s) in schema (like "customer_name").
- Normalize and expand synonyms or abbreviations to match columns.
- If multiple columns match, pick the most relevant one.
Example result:
import altair as alt
df_agg = df.groupby('region')['sales'].sum().reset_index().sort_values('sales', ascending=False)
chart = alt.Chart(df_agg).mark_bar().encode(
x='region:N',
y='sales:Q',
color=alt.Color('region:N', scale=alt.Scale(scheme='tableau10')),
tooltip=['region', 'sales']
).properties(
title='Top Sales per Region'
).transform_calculate(
text='datum.sales'
).mark_bar(
cornerRadiusTopLeft=3, cornerRadiusTopRight=3
)
"""
prompt_enhance_plot_code = prompt_enhance_plot_code.format(previous_code = previous_code, plot_instruction=plot_instruction)
try:
response = llm_plot.invoke([HumanMessage(content=prompt_enhance_plot_code)])
code = response.content.strip()
# Remove markdown fences if present
if code.startswith("```"):
lines = code.split("\n")
if lines[0].startswith("```"):
lines = lines[1:]
if lines[-1].startswith("```"):
lines = lines[:-1]
code = "\n".join(lines).strip()
return {
"plot_instruction": plot_instruction,
"code": code,
"interpretation":" "
}
except Exception as e:
raise RuntimeError(f"Failed to generate plot: {e}")
def generate_plot_from_code(code: str):
local_scope = {"df": df, "alt": alt}
exec(code, {}, local_scope)
if "chart" not in local_scope:
raise ValueError("No valid `chart` was generated.")
return local_scope["chart"]
def generate_df_agg_from_code(code: str):
local_scope = {"df": df, "alt": alt}
exec(code, {}, local_scope)
if "chart" not in local_scope:
raise ValueError("No valid `chart` was generated.")
return local_scope["df_agg"]
tools = [
describe_schema,
generate_plot_code,
enhance_plot_code,
]
# --- LLM Setup ---
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0.5,
max_tokens=None,
timeout=None,
max_retries=2,
)
llm = llm.bind_tools(tools)
llm_analysis = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0.5,
max_tokens=None,
timeout=None,
max_retries=2,
)
llm_plot = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0.5,
max_tokens=None,
timeout=None,
max_retries=2,
)
# --- LangGraph State Setup ---
class AgentState(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
assigned_tools: Optional[List[str]] # List of tools assigned to the agent
table_schema: Optional[str] # Schema of the DataFrame, assume only one table
plots: List[dict] # List of generated plots
sys_msg = SystemMessage(content="""
You are a helpful assistant named Terloka Bro who works for creating plots.
you can run tools such as `describe_schema` to understand the dataframe schema,
and `generate_plot_code` to generate Python code that creates a plot using the Altair library.
Please do `describe_schema` first then `generate_plot_code` to create a plot, do not call those two function at the same time.
No need to say if the chart cannot be displayed, because it already handled in the application.
You already have access to a DataFrame called `df`
""")
#--- Assistant Functions ---
def assistant(state: AgentState) -> AgentState:
schema_output = describe_schema.invoke(df)
res = llm.invoke([sys_msg] + [HumanMessage(content="show your scheme")] + [AIMessage(content=schema_output)] + [ToolMessage(content=schema_output, name="describe_schema", id=str(uuid.uuid4()), tool_call_id=str(uuid.uuid4()))] + state["messages"])
state["messages"].append(res)
assigned_tools = []
if isinstance(res, AIMessage):
if res.tool_calls:
for tool_call in res.tool_calls:
assigned_tools.append(tool_call)
return {
"messages": state["messages"],
"assigned_tools": assigned_tools,
"table_schema": state.get("table_schema", []),
"plots": state.get("plots", [])
}
sys_msg_analysis = SystemMessage(content="""
You are given an aggregated `df_agg` dataframe and `instruction`. Your are required to analyze the finding base on the given data.
""")
def assistant_analysis(plot_code,plot_instruction):
df_agg_temp = generate_df_agg_from_code(plot_code)
df_agg_result = df_agg_temp.to_dict(orient='list')
prompt_analysis = f"""
You are given aggregation data result:
```
{df_agg_result}
```
By given analysis requirement :
```
{plot_instruction}
```
The expect output:
- Only provide insight and findings base on the instruction and result
- Do NOT give suggest plot code
- Do NOT explain the technical of the chart information
"""
res = llm_analysis.invoke([sys_msg_analysis] + [HumanMessage(content=prompt_analysis)])
analysis_str = res.content
return analysis_str
def clean_runned_tools(state: AgentState, tool_name: str) -> AgentState:
"""Clean the runned tools from the state"""
if state["assigned_tools"]:
removed_list = state["assigned_tools"].copy()
for tool_call in state["assigned_tools"]:
if tool_call.get('name') == tool_name:
removed_list.remove(tool_call)
break
state["assigned_tools"] = removed_list
return state
def do_describe_chema(state: AgentState) -> AgentState:
"""Perform the describe schema using the assigned tool"""
if state["assigned_tools"]:
for tool_call in state["assigned_tools"]:
if tool_call.get('name') == "describe_schema":
tool_res = describe_schema.invoke(tool_call['args']) # Call the tool with the arguments
state["table_schema"] = tool_res
tool_message = ToolMessage(
content=str(tool_res), # Convert the result to string
id =str(uuid.uuid4()), # Generate a unique ID for the tool message
name=tool_call['name'], # Use the tool name from the tool call
tool_call_id=tool_call['id'] # Use the tool call ID for tracking
)
state["messages"].append(tool_message)
break
""" delete the runned tool call from the state """
state = clean_runned_tools(state, "describe_schema")
return state
def do_generate_plot_code(state: AgentState) -> AgentState:
"""Perform the plot generation using the assigned tool"""
if state["assigned_tools"]:
for tool_call in state["assigned_tools"]:
if tool_call.get('name') == "generate_plot_code":
tool_res = generate_plot_code.invoke(tool_call['args']) # Call the tool with the arguments
if "plots" not in state:
state["plots"] = []
state["plots"].append(tool_res)
tool_message = ToolMessage(
content=str(tool_res['code']), # Convert the result to string, but only the chart
id =str(uuid.uuid4()), # Generate a unique ID for the tool message
name=tool_call['name'], # Use the tool name from the tool call
tool_call_id=tool_call['id'] # Use the tool call ID for tracking
)
state["messages"].append(tool_message)
break
""" delete the runned tool call from the state """
state = clean_runned_tools(state, "generate_plot_code")
return state
def do_enhance_plot_code(state: AgentState) -> AgentState:
"""Perform the plot generation using the assigned tool"""
if state["assigned_tools"]:
for tool_call in state["assigned_tools"]:
if tool_call.get('name') == "enhance_plot_code":
tool_res = enhance_plot_code.invoke(tool_call['args']) # Call the tool with the arguments
if "plots" not in state:
state["plots"] = []
state["plots"].append(tool_res)
tool_message = ToolMessage(
content=str(tool_res['code']), # Convert the result to string, but only the chart
id =str(uuid.uuid4()), # Generate a unique ID for the tool message
name=tool_call['name'], # Use the tool name from the tool call
tool_call_id=tool_call['id'] # Use the tool call ID for tracking
)
state["messages"].append(tool_message)
break
""" delete the runned tool call from the state """
state = clean_runned_tools(state, "enhance_plot_code")
return state
def route_to_tool(state: AgentState) -> str:
"""Determine the next step based on assigned tools"""
if state["assigned_tools"]:
for tool_call in state["assigned_tools"]:
if tool_call.get('name') == "describe_schema":
return "describe_schema"
elif tool_call.get('name') == "generate_plot_code":
return "generate_plot_code"
elif tool_call.get('name') == "enhance_plot_code":
return "enhance_plot_code"
return "no_tool_required"
def route_from_tool(state: AgentState) -> str:
"""Determine the next step based on assigned tools"""
if state["assigned_tools"]:
for tool_call in state["assigned_tools"]:
if tool_call.get('name') == "generate_plot_code":
return "generate_plot_code"
return "assistant"
def build_graph():
builder = StateGraph(AgentState)
builder.add_node("Assistant", assistant)
builder.add_node("Describe Schema", do_describe_chema)
builder.add_node("Generate Plot", do_generate_plot_code)
builder.add_node("Enhance Plot", do_enhance_plot_code)
edges_to_tool = {
"describe_schema": "Describe Schema",
"generate_plot_code": "Generate Plot",
"enhance_plot_code": "Enhance Plot",
"no_tool_required": END,
}
edges_from_tool = {
"generate_plot_code": "Generate Plot",
"assistant": "Assistant",
}
builder.add_edge(START, "Assistant")
builder.add_conditional_edges("Assistant", route_to_tool, edges_to_tool)
builder.add_conditional_edges("Describe Schema", route_from_tool, edges_from_tool)
builder.add_conditional_edges("Generate Plot", route_from_tool, edges_from_tool)
builder.add_conditional_edges("Enhance Plot", route_from_tool, edges_from_tool)
builder.add_edge("Assistant", END)
memory = InMemorySaver()
return builder.compile(checkpointer=memory)
react_graph = build_graph()
config = {"configurable": {"thread_id": 123, "session": 100}}
# --- Data Exploration Functions ---
def to_snake_case(name):
return name.lower().replace(' ', '_').replace('-', '_')
def get_info_df(df):
info_df = pd.DataFrame({
"column": df.columns,
"non_null_count": df.notnull().sum().values,
"dtype": df.dtypes.astype(str).values
})
return info_df
def summarize_nulls(df):
null_summary = df.isnull().sum().reset_index()
null_summary.columns = ['column', 'null_count']
null_summary['percent'] = (null_summary['null_count'] / len(df)) * 100
return null_summary[null_summary['null_count'] > 0]
def summarize_duplicates(df):
return pd.DataFrame({
"duplicated_rows": [df.duplicated().sum()],
"total_rows": [len(df)],
"percent_duplicated": [100 * df.duplicated().sum() / len(df)]
})
def load_example_dataset(name):
global df
try:
if name == "iris":
df = pd.read_csv("https://raw.githubusercontent.com/uiuc-cse/data-fa14/gh-pages/data/iris.csv")
elif name == "titanic":
df = pd.read_csv("https://raw.githubusercontent.com/datasciencedojo/datasets/refs/heads/master/titanic.csv")
elif name == "superstore":
df = pd.read_excel("https://public.tableau.com/app/sample-data/sample_-_superstore.xls")
else:
raise ValueError("Unknown dataset name.")
df.columns = [col.lower().replace(" ", "_") for col in df.columns]
null_summary = summarize_nulls(df)
dup_summary = summarize_duplicates(df)
return (
gr.update(visible=True), # Show main tabs
gr.update(visible=False), # Hide warning
gr.update(visible=False), # Hide iris button
gr.update(visible=False), # Hide titanic button
gr.update(visible=False), # Hide superstore button
gr.update(visible=False), # Hide upload button
gr.update(visible=False), # Hide instruction button
gr.update(visible=False), # Hide example button
df.describe().reset_index(),
get_info_df(df),
df.head(),
null_summary,
dup_summary
)
except Exception as e:
raise gr.Error(f"Failed to load dataset: {e}")
def handle_upload(file):
global df
if file is None or file.name == "":
return (
gr.update(visible=False), # Hide main tabs
gr.update(visible=True), # Show warning
pd.DataFrame(), "", pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
)
try:
df = pd.read_csv(file) if file.name.endswith(".csv") else pd.read_excel(file)
except Exception as e:
raise gr.Error(f"Failed to read the file: {e}")
df.columns = [to_snake_case(col) for col in df.columns]
df = df
null_summary = summarize_nulls(df)
dup_summary = summarize_duplicates(df)
# Rebuild the graph and reset the config
global react_graph
react_graph = build_graph() # Rebuild graph to reset state
global config
config = {"configurable": {"thread_id": str(uuid.uuid4()), "session": str(uuid.uuid4())}}
return (
gr.update(visible=True), # Show main tabs
gr.update(visible=False), # Hide warning
gr.update(visible=False), # Hide iris button
gr.update(visible=False), # Hide titanic button
gr.update(visible=False), # Hide superstore button
gr.update(visible=True), # Hide upload button
gr.update(visible=False), # Hide instruction button
gr.update(visible=False), # Hide example button
df.describe().reset_index(),
get_info_df(df),
df.head(),
null_summary,
dup_summary
)
def refresh_graph():
global react_graph
react_graph = build_graph() # Rebuild graph to reset state
global config
config = {"configurable": {"thread_id": str(uuid.uuid4()), "session": str(uuid.uuid4())}}
def respond(message, chat_history):
chat_history = []
res = react_graph.invoke(
{"messages": [HumanMessage(content=message)]}
, config=config)
for msg in res["messages"]:
msg.pretty_print()
if isinstance(msg, HumanMessage):
chat_history.append({"role": "user", "content": msg.content})
if isinstance(msg, AIMessage):
ai_response = msg.content
chat_history.append({"role": "assistant", "content": ai_response})
if isinstance(msg, ToolMessage):
if msg.name == "generate_plot_code":
plot_result = generate_plot_from_code(msg.content)
chat_history.append({"role": "assistant", "content": gr.Plot(plot_result)})
chat_history.append({"role": "assistant", "content": res["plots"][-1].get('interpretation')})
if msg.name == "enhance_plot_code":
plot_result = generate_plot_from_code(msg.content)
chat_history.append({"role": "assistant", "content": gr.Plot(plot_result)})
time.sleep(1)
return "", chat_history
# --- Gradio UI ---
my_theme = gr.Theme.from_hub("NoCrypt/miku")
with gr.Blocks(theme=my_theme) as demo:
demo.load(refresh_graph, inputs=None, outputs=None)
gr.HTML("""
<style>
body, .container, h1, h2, h3, p, span {
font-family: "IBM Plex Sans";
}
#instruction blockquote {
margin: 12px auto 0 auto;
padding: 12px 16px;
border-radius: 6px;
font-size: 14px;
max-width: 7000px;
}
#chatbot_hint {
margin: 12px auto 0 auto;
padding: 12px 16px;
border-radius: 6px;
font-size: 14px;
max-width: 7000px;
}
@keyframes fadeInTitle {
0% {
opacity: 0;
transform: translateY(-10px);
}
100% {
opacity: 1;
transform: translateY(0);
}
}
.container {
padding: 24px;
border-radius: 16px;
box-shadow: 0 2px 30px rgba(42, 86, 198, 0.12);
text-align: center;
transition: box-shadow 0.3s ease;
margin-bottom: 12px;
}
.subtitle {
font-size: 16px;
margin-top: -6px;
}
</style>
<div class="container">
<h1>
<span style="font-size: 30px;">๐ฏ</span>
<span class="title-gradient">AI Chat to Visual</span>
</h1>
<p class="subtitle">Your gateway to smarter decisions through travel data.</p>
</div>
""")
instruction_box = gr.Markdown(
"> Upload a file to get started. Supported formats: `.csv`, `.xls`, `.xlsx`",
elem_id="instruction"
)
warning_box = gr.Markdown("โ ๏ธ **You can't proceed without uploading your files first**", visible=True)
upload_btn = gr.File(file_types=[".csv", ".xls", ".xlsx"], label="๐ Upload File")
example_box = gr.Markdown("### Or use an example dataset:")
with gr.Row():
iris_btn = gr.Button("๐ธ Load Iris")
titanic_btn = gr.Button("๐ข Load Titanic")
superstore_btn = gr.Button("๐ช Load Superstore")
with gr.Tabs(visible=False) as main_tabs:
with gr.Tab("๐ค ChatBot for Viz"):
gr.Markdown(
"๐ Want to understand your data first? Go to the Data Exploration tab first!",
elem_id="chatbot_hint"
)
chatbot = gr.Chatbot(type="messages", label="Data Chatbot", elem_id="chatbot")
msg = gr.Textbox(label="",elem_id="chat_input", container=False, placeholder="Ask me anything about your data...")
msg.submit(respond, [msg, chatbot], [msg, chatbot])
with gr.Tab("๐ Data Exploration"):
with gr.Column():
with gr.Accordion("๐งฎ Data Description", open=True):
describe_output = gr.DataFrame()
with gr.Accordion("๐ Data Info", open=True):
info_output = gr.DataFrame()
with gr.Accordion("๐๏ธ Preview Data", open=False):
head_output = gr.DataFrame()
with gr.Accordion("๐งผ Null Detection", open=False):
null_output = gr.DataFrame()
with gr.Accordion("๐ Duplicate Check", open=False):
dup_output = gr.DataFrame()
# Removed Histogram section here
gr.Markdown("---")
gr.Markdown("๐ ๏ธ Built with โค๏ธ by **Terloka Bros**", elem_id="footer")
upload_btn.change(
fn=handle_upload,
inputs=upload_btn,
outputs=[
main_tabs, warning_box, iris_btn, titanic_btn, superstore_btn,upload_btn,instruction_box,example_box,
describe_output, info_output,
head_output, null_output,
dup_output
]
)
iris_btn.click(
fn=lambda: load_example_dataset("iris"),
outputs=[
main_tabs, warning_box, iris_btn, titanic_btn, superstore_btn,upload_btn,instruction_box,example_box,
describe_output, info_output,
head_output, null_output,
dup_output
]
)
titanic_btn.click(
fn=lambda: load_example_dataset("titanic"),
outputs=[
main_tabs, warning_box, iris_btn, titanic_btn, superstore_btn,upload_btn,instruction_box,example_box,
describe_output, info_output,
head_output, null_output,
dup_output
]
)
superstore_btn.click(
fn=lambda: load_example_dataset("superstore"),
outputs=[
main_tabs, warning_box, iris_btn, titanic_btn, superstore_btn,upload_btn,instruction_box,example_box,
describe_output, info_output,
head_output, null_output,
dup_output
]
)
demo.launch()
|