Add application
Browse files- README.md +10 -0
- app.py +335 -0
- requirements.txt +3 -0
README.md
CHANGED
|
@@ -9,6 +9,16 @@ app_file: app.py
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: 3D Game Environment Builder MCP
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
short_description: 3D Game Environment Builder MCP
|
| 12 |
+
tags:
|
| 13 |
+
- mcp-server-track
|
| 14 |
---
|
| 15 |
|
| 16 |
+
Team members: castlebbs@ stargarnet@
|
| 17 |
+
Modeling of Hugging Face 3D: zinkenite@
|
| 18 |
+
|
| 19 |
+
Youtube video: https://www.youtube.com/watch?v=09Dk9OL65bc
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import re
|
| 3 |
+
import anthropic
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import modal
|
| 6 |
+
import base64
|
| 7 |
+
import os
|
| 8 |
+
import tempfile
|
| 9 |
+
|
| 10 |
+
# Modal function to run the 3D generation pipeline
|
| 11 |
+
text_to_3d = modal.Function.from_name("flux-trellis-gguf-3d-pipeline", "text_to_3d")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def generate_3d_prompts(player_bio: str, num_assets: int = 10) -> list:
|
| 15 |
+
"""
|
| 16 |
+
Analyze player bio using Claude Sonnet to generate 3D asset prompts.
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
player_bio (str): The player's biographical information
|
| 20 |
+
num_assets (int): Number of assets to generate (default: 10)
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
list: List of 3D generation prompts
|
| 24 |
+
"""
|
| 25 |
+
client = anthropic.Anthropic()
|
| 26 |
+
|
| 27 |
+
system_prompt = f"""You are an expert 3D scene designer for video games. Your task is to analyze a player's biographical information and identify specific 3D assets that would create a comfortable, personalized environment for them.
|
| 28 |
+
|
| 29 |
+
Based on the player's bio, generate a list of exactly {num_assets} specific 3D asset prompts that would compose a scene tailored to their interests, personality, and background.
|
| 30 |
+
|
| 31 |
+
Objects should be deeply personal and couldn't exist in any generic asset library. You should combine multiple elements into a single prompt if they are closely related. For instance, if the player loves both coffee and gaming, you might create a prompt for a "gaming desk with a custom coffee station."
|
| 32 |
+
Prefer 3d assets, which combine multiple elements instead of single objects like a piece of furniture or a decoration.
|
| 33 |
+
Each prompt should include: 3d isomorphic, white background. This is for 3D game asset generation.
|
| 34 |
+
Format your response as a simple JSON array of strings, where each string is a detailed prompt for 3D generation. Focus on objects like furniture, decorations, equipment, or environmental elements.
|
| 35 |
+
|
| 36 |
+
Follow this format:
|
| 37 |
+
<output>
|
| 38 |
+
```json
|
| 39 |
+
[
|
| 40 |
+
"prompt 1",
|
| 41 |
+
"prompt 2",
|
| 42 |
+
"prompt 3",
|
| 43 |
+
]
|
| 44 |
+
```
|
| 45 |
+
</output>
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
response = client.messages.create(
|
| 49 |
+
model="claude-sonnet-4-20250514",
|
| 50 |
+
max_tokens=1024,
|
| 51 |
+
system=system_prompt,
|
| 52 |
+
messages=[{"role": "user", "content": f"Player bio: {player_bio}"}],
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
prompts_text = response.content[0].text
|
| 56 |
+
|
| 57 |
+
# Extract JSON from the response text using regex
|
| 58 |
+
try:
|
| 59 |
+
# Find JSON array between ```json ``` markers
|
| 60 |
+
json_pattern = r"```json\s*(\[.*?\])\s*```"
|
| 61 |
+
match = re.search(json_pattern, prompts_text, re.DOTALL)
|
| 62 |
+
if match:
|
| 63 |
+
json_str = match.group(1)
|
| 64 |
+
return json.loads(json_str)
|
| 65 |
+
else:
|
| 66 |
+
# Fallback: try to find any JSON array
|
| 67 |
+
array_pattern = r"(\[.*?\])"
|
| 68 |
+
match = re.search(array_pattern, prompts_text, re.DOTALL)
|
| 69 |
+
if match:
|
| 70 |
+
return json.loads(match.group(1))
|
| 71 |
+
else:
|
| 72 |
+
return [prompts_text]
|
| 73 |
+
except (json.JSONDecodeError, ValueError):
|
| 74 |
+
# Fallback: return the raw text if JSON parsing fails
|
| 75 |
+
return [prompts_text]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def generate_3d_assets(player_bio: str, num_assets: int = 10) -> str:
|
| 79 |
+
"""
|
| 80 |
+
Generate 3D assets based on a player's bio for video game scene composition.
|
| 81 |
+
|
| 82 |
+
Args:
|
| 83 |
+
player_bio (str): The player's biographical information
|
| 84 |
+
num_assets (int): Number of assets to generate
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
str: JSON string containing prompts and GLB file data
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
# Analyze bio with Claude to get 3D prompts
|
| 91 |
+
prompts = generate_3d_prompts(player_bio, num_assets)
|
| 92 |
+
|
| 93 |
+
# Generate 3D assets using Modal function
|
| 94 |
+
modal_results = text_to_3d.map(prompts)
|
| 95 |
+
|
| 96 |
+
# Process results and prepare GLB data for API/MCP consumption
|
| 97 |
+
generated_assets = []
|
| 98 |
+
for i, result in enumerate(modal_results):
|
| 99 |
+
if "glb_file" in result:
|
| 100 |
+
generated_assets.append(
|
| 101 |
+
{
|
| 102 |
+
"prompt": prompts[i],
|
| 103 |
+
"glb_data": base64.b64encode(result["glb_file"]).decode(
|
| 104 |
+
"utf-8"
|
| 105 |
+
),
|
| 106 |
+
"size_bytes": len(result["glb_file"]),
|
| 107 |
+
"asset_id": f"asset_{i+1}",
|
| 108 |
+
}
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
result_dict = {
|
| 112 |
+
"assets": generated_assets,
|
| 113 |
+
"total_assets": len(generated_assets),
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
return json.dumps(result_dict)
|
| 117 |
+
|
| 118 |
+
except Exception as e:
|
| 119 |
+
error_dict = {"error": str(e), "prompts": [], "assets": [], "total_assets": 0}
|
| 120 |
+
return json.dumps(error_dict)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def generate_3d_assets_with_display(player_bio: str, num_assets: int = 10) -> tuple:
|
| 124 |
+
"""
|
| 125 |
+
Generate 3D assets and prepare them for both JSON output and 3D display.
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
tuple: (json_output, model_paths_dict, num_assets)
|
| 129 |
+
"""
|
| 130 |
+
result_json = generate_3d_assets(player_bio, num_assets)
|
| 131 |
+
result = json.loads(result_json)
|
| 132 |
+
|
| 133 |
+
if "error" in result:
|
| 134 |
+
return result_json, {}, num_assets
|
| 135 |
+
|
| 136 |
+
# Save GLB files to temporary directory for display
|
| 137 |
+
temp_dir = tempfile.mkdtemp()
|
| 138 |
+
model_paths = {}
|
| 139 |
+
|
| 140 |
+
for i, asset in enumerate(result.get("assets", [])):
|
| 141 |
+
if "glb_data" in asset:
|
| 142 |
+
# Decode base64 back to bytes and save to file
|
| 143 |
+
glb_bytes = base64.b64decode(asset["glb_data"])
|
| 144 |
+
model_path = os.path.join(temp_dir, f"model_{i+1}.glb")
|
| 145 |
+
with open(model_path, "wb") as f:
|
| 146 |
+
f.write(glb_bytes)
|
| 147 |
+
model_paths[f"model_{i+1}"] = model_path
|
| 148 |
+
|
| 149 |
+
return result_json, model_paths, num_assets
|
| 150 |
+
|
| 151 |
+
# Create a clean Gradio interface using Blocks
|
| 152 |
+
with gr.Blocks(theme=gr.themes.Monochrome(), title="3D Scene Asset Generator") as demo:
|
| 153 |
+
|
| 154 |
+
gr.Markdown("# ๐ฎ 3D Game Environment Builder ๐๏ธ")
|
| 155 |
+
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Column(scale=2):
|
| 158 |
+
gr.Markdown(
|
| 159 |
+
"""
|
| 160 |
+
Transform player personalities into immersive 3D game environments! Create fast personalized 3D environments to a player, by using information from
|
| 161 |
+
their bio. This tool will craft personalized 3D assets that reflect each player's unique interests, hobbies, and lifestyle, allowing you to build unique scenes for video games.
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
This space is used as a MCP Server, example usage:
|
| 165 |
+
```bash
|
| 166 |
+
mcptools call generate_3d_assets --params '{"player_bio":"Elena is a music producer who [...]"}' https://{gradio-url}:7860/gradio_api/mcp/sse
|
| 167 |
+
```
|
| 168 |
+
This returns a JSON with the generated 3D assets in GLB format, along with their description.
|
| 169 |
+
"""
|
| 170 |
+
)
|
| 171 |
+
with gr.Column(scale=1):
|
| 172 |
+
gr.HTML(
|
| 173 |
+
"""
|
| 174 |
+
<iframe width="100%" height="315" src="https://www.youtube.com/embed/09Dk9OL65bc"
|
| 175 |
+
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
|
| 176 |
+
allowfullscreen></iframe>
|
| 177 |
+
"""
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
gr.Image("images/pipeline.png", label="๐ฏ Pipeline Overview", show_label=True, height=200)
|
| 181 |
+
|
| 182 |
+
gr.Markdown(
|
| 183 |
+
"""
|
| 184 |
+
<div style="background-color: #e7f3ff; border-left: 4px solid #2196F3; padding: 16px; margin: 16px 0; border-radius: 4px;">
|
| 185 |
+
<h4 style="color: #1976D2; margin-top: 0; margin-bottom: 8px;">โน๏ธ Testing Information</h4>
|
| 186 |
+
<p style="margin: 0; color: #333;">
|
| 187 |
+
<strong>Note:</strong> This space cannot be directly tested as we didn't want users to enter their own API keys for the various providers used in the pipeline.
|
| 188 |
+
</p>
|
| 189 |
+
<p style="margin: 8px 0 0 0; color: #333;">
|
| 190 |
+
However, we provide all the source code and the instructions to build your own and test it at:
|
| 191 |
+
<a href="https://github.com/castlebbs/gradio-mcp-hackathon/" target="_blank" style="color: #1976D2; text-decoration: none; font-weight: bold;">๐ GitHub Repository</a>
|
| 192 |
+
</p>
|
| 193 |
+
</div>
|
| 194 |
+
"""
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
with gr.Row():
|
| 198 |
+
with gr.Column(scale=3):
|
| 199 |
+
bio_input = gr.Textbox(
|
| 200 |
+
label="๐ Player Bio",
|
| 201 |
+
placeholder=(
|
| 202 |
+
"Tell us about the player's interests, hobbies, personality, "
|
| 203 |
+
"and lifestyle...\n\n"
|
| 204 |
+
"Example: Sarah is an avid reader who loves fantasy novels and "
|
| 205 |
+
"cozy spaces. She enjoys knitting while listening to classical "
|
| 206 |
+
"music and has a collection of houseplants. Her ideal environment "
|
| 207 |
+
"would be warm and inviting with lots of natural elements."
|
| 208 |
+
),
|
| 209 |
+
lines=8,
|
| 210 |
+
max_lines=10,
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
with gr.Column(scale=1):
|
| 214 |
+
num_assets_slider = gr.Slider(
|
| 215 |
+
minimum=1,
|
| 216 |
+
maximum=10,
|
| 217 |
+
value=5,
|
| 218 |
+
step=1,
|
| 219 |
+
label="๐ฏ Number of 3D Assets to Generate.",
|
| 220 |
+
info="Select how many 3D assets you want to generate (1-10).\n\nA"
|
| 221 |
+
"Assets generation run in parallel in dedicated pipelines."
|
| 222 |
+
"Each pipeline runs on a separate Modal Container with A100-40GB"
|
| 223 |
+
"attached to them",
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
with gr.Row():
|
| 227 |
+
generate_btn = gr.Button(
|
| 228 |
+
"โจ Generate 3D Assets", variant="primary", size="lg"
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
with gr.Row():
|
| 232 |
+
with gr.Column(scale=1):
|
| 233 |
+
output_json = gr.JSON(label="๐ฏ Generated 3D Assets Results")
|
| 234 |
+
with gr.Column(scale=1):
|
| 235 |
+
# Create tabs that will be shown/hidden based on num_assets
|
| 236 |
+
model_tabs = gr.Tabs()
|
| 237 |
+
with model_tabs:
|
| 238 |
+
model_components = []
|
| 239 |
+
for i in range(1, 11):
|
| 240 |
+
with gr.Tab(f"Model {i}", visible=(i <= 5)) as tab:
|
| 241 |
+
model_3d = gr.Model3D(label=f"๐จ 3D Model {i}", height=400)
|
| 242 |
+
model_components.append((tab, model_3d))
|
| 243 |
+
|
| 244 |
+
# Add examples
|
| 245 |
+
gr.Examples(
|
| 246 |
+
examples=[
|
| 247 |
+
[
|
| 248 |
+
"Alice is a nature lover who enjoys reading fantasy novels. She has "
|
| 249 |
+
"a collection of vintage books and loves to spend time in her cozy "
|
| 250 |
+
"garden with her cat, Whiskers. Alice also enjoys painting landscapes "
|
| 251 |
+
"and has a small easel set up in her living room.",
|
| 252 |
+
5,
|
| 253 |
+
],
|
| 254 |
+
[
|
| 255 |
+
"Marcus is a tech enthusiast and gaming streamer who loves mechanical "
|
| 256 |
+
"keyboards and collecting vintage arcade games. He's also a coffee "
|
| 257 |
+
"connoisseur who roasts his own beans and enjoys late-night coding "
|
| 258 |
+
"sessions.",
|
| 259 |
+
7,
|
| 260 |
+
],
|
| 261 |
+
[
|
| 262 |
+
"Elena is a music producer who plays multiple instruments including "
|
| 263 |
+
"piano and guitar. She has a home studio filled with vintage "
|
| 264 |
+
"synthesizers and loves vinyl records. She also practices yoga and "
|
| 265 |
+
"meditation in her spare time.",
|
| 266 |
+
6,
|
| 267 |
+
],
|
| 268 |
+
],
|
| 269 |
+
inputs=[bio_input, num_assets_slider],
|
| 270 |
+
label="๐ก Try these example biographies:",
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
def update_models(player_bio: str, num_assets: int):
|
| 274 |
+
"""Handle model updates for all tabs"""
|
| 275 |
+
json_result, model_paths, _ = generate_3d_assets_with_display(
|
| 276 |
+
player_bio, num_assets
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Prepare outputs for all components
|
| 280 |
+
tab_updates = []
|
| 281 |
+
model_updates = []
|
| 282 |
+
|
| 283 |
+
for i in range(1, 11):
|
| 284 |
+
# Update tab visibility
|
| 285 |
+
tab_updates.append(gr.update(visible=(i <= num_assets)))
|
| 286 |
+
|
| 287 |
+
# Update model content
|
| 288 |
+
model_key = f"model_{i}"
|
| 289 |
+
if i <= num_assets and model_key in model_paths:
|
| 290 |
+
model_updates.append(model_paths[model_key])
|
| 291 |
+
else:
|
| 292 |
+
model_updates.append(None)
|
| 293 |
+
|
| 294 |
+
return [json_result] + tab_updates + model_updates
|
| 295 |
+
|
| 296 |
+
# Update tab visibility when slider changes
|
| 297 |
+
def update_tab_visibility(num_assets: int):
|
| 298 |
+
tab_updates = []
|
| 299 |
+
for i in range(1, 11):
|
| 300 |
+
tab_updates.append(gr.update(visible=(i <= num_assets)))
|
| 301 |
+
return tab_updates
|
| 302 |
+
|
| 303 |
+
num_assets_slider.change(
|
| 304 |
+
fn=update_tab_visibility,
|
| 305 |
+
inputs=[num_assets_slider],
|
| 306 |
+
outputs=[tab for tab, _ in model_components],
|
| 307 |
+
api_name=False,
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
generate_btn.click(
|
| 311 |
+
fn=update_models,
|
| 312 |
+
inputs=[bio_input, num_assets_slider],
|
| 313 |
+
outputs=[output_json]
|
| 314 |
+
+ [tab for tab, _ in model_components]
|
| 315 |
+
+ [model for _, model in model_components],
|
| 316 |
+
show_progress=True,
|
| 317 |
+
api_name=False,
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
# API components
|
| 321 |
+
api_input = gr.Textbox(visible=False)
|
| 322 |
+
api_num_assets = gr.Number(visible=False, value=10)
|
| 323 |
+
api_output = gr.Textbox(visible=False)
|
| 324 |
+
api_btn = gr.Button(visible=False)
|
| 325 |
+
|
| 326 |
+
api_btn.click(
|
| 327 |
+
fn=generate_3d_assets,
|
| 328 |
+
inputs=[api_input, api_num_assets],
|
| 329 |
+
outputs=api_output,
|
| 330 |
+
api_name="generate_3d_assets",
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
# Launch the Gradio web interface and MCP server
|
| 334 |
+
if __name__ == "__main__":
|
| 335 |
+
demo.launch(mcp_server=True, share=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
modal
|
| 3 |
+
anthropic
|