|
import os
|
|
|
|
import torch
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
from TTS.bin.compute_embeddings import compute_embeddings
|
|
from TTS.bin.resample import resample_files
|
|
from TTS.config.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.configs.vits_config import VitsConfig
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig
|
|
from TTS.utils.downloaders import download_libri_tts
|
|
|
|
torch.set_num_threads(24)
|
|
|
|
|
|
"""
|
|
This recipe replicates the first experiment proposed in the CML-TTS paper (https://arxiv.org/abs/2306.10097). It uses the YourTTS model.
|
|
YourTTS model is based on the VITS model however it uses external speaker embeddings extracted from a pre-trained speaker encoder and has small architecture changes.
|
|
"""
|
|
CURRENT_PATH = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
|
RUN_NAME = "YourTTS-CML-TTS"
|
|
|
|
|
|
OUT_PATH = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
|
RESTORE_PATH = "/raid/edresson/CML_YourTTS/checkpoints_yourtts_cml_tts_dataset/best_model.pth"
|
|
|
|
|
|
SKIP_TRAIN_EPOCH = False
|
|
|
|
|
|
BATCH_SIZE = 32
|
|
|
|
|
|
|
|
SAMPLE_RATE = 24000
|
|
|
|
|
|
MAX_AUDIO_LEN_IN_SECONDS = float("inf")
|
|
|
|
|
|
|
|
CML_DATASET_PATH = "./datasets/CML-TTS-Dataset/"
|
|
|
|
|
|
|
|
|
|
LIBRITTS_DOWNLOAD_PATH = "./datasets/LibriTTS/"
|
|
|
|
if not os.path.exists(LIBRITTS_DOWNLOAD_PATH):
|
|
print(">>> Downloading LibriTTS dataset:")
|
|
download_libri_tts(LIBRITTS_DOWNLOAD_PATH, subset="libri-tts-clean-360")
|
|
|
|
|
|
libritts_config = BaseDatasetConfig(
|
|
formatter="libri_tts",
|
|
dataset_name="libri_tts",
|
|
meta_file_train="",
|
|
meta_file_val="",
|
|
path=os.path.join(LIBRITTS_DOWNLOAD_PATH, "train-clean-360/"),
|
|
language="en",
|
|
)
|
|
|
|
|
|
pt_config = BaseDatasetConfig(
|
|
formatter="cml_tts",
|
|
dataset_name="cml_tts",
|
|
meta_file_train="train.csv",
|
|
meta_file_val="",
|
|
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_portuguese_v0.1/"),
|
|
language="pt-br",
|
|
)
|
|
|
|
pl_config = BaseDatasetConfig(
|
|
formatter="cml_tts",
|
|
dataset_name="cml_tts",
|
|
meta_file_train="train.csv",
|
|
meta_file_val="",
|
|
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_polish_v0.1/"),
|
|
language="pl",
|
|
)
|
|
|
|
it_config = BaseDatasetConfig(
|
|
formatter="cml_tts",
|
|
dataset_name="cml_tts",
|
|
meta_file_train="train.csv",
|
|
meta_file_val="",
|
|
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_italian_v0.1/"),
|
|
language="it",
|
|
)
|
|
|
|
fr_config = BaseDatasetConfig(
|
|
formatter="cml_tts",
|
|
dataset_name="cml_tts",
|
|
meta_file_train="train.csv",
|
|
meta_file_val="",
|
|
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_french_v0.1/"),
|
|
language="fr",
|
|
)
|
|
|
|
du_config = BaseDatasetConfig(
|
|
formatter="cml_tts",
|
|
dataset_name="cml_tts",
|
|
meta_file_train="train.csv",
|
|
meta_file_val="",
|
|
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_dutch_v0.1/"),
|
|
language="du",
|
|
)
|
|
|
|
ge_config = BaseDatasetConfig(
|
|
formatter="cml_tts",
|
|
dataset_name="cml_tts",
|
|
meta_file_train="train.csv",
|
|
meta_file_val="",
|
|
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_german_v0.1/"),
|
|
language="ge",
|
|
)
|
|
|
|
sp_config = BaseDatasetConfig(
|
|
formatter="cml_tts",
|
|
dataset_name="cml_tts",
|
|
meta_file_train="train.csv",
|
|
meta_file_val="",
|
|
path=os.path.join(CML_DATASET_PATH, "cml_tts_dataset_spanish_v0.1/"),
|
|
language="sp",
|
|
)
|
|
|
|
|
|
DATASETS_CONFIG_LIST = [libritts_config, pt_config, pl_config, it_config, fr_config, du_config, ge_config, sp_config]
|
|
|
|
|
|
SPEAKER_ENCODER_CHECKPOINT_PATH = (
|
|
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
|
|
)
|
|
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"
|
|
|
|
D_VECTOR_FILES = []
|
|
|
|
|
|
for dataset_conf in DATASETS_CONFIG_LIST:
|
|
|
|
embeddings_file = os.path.join(dataset_conf.path, "speakers.pth")
|
|
if not os.path.isfile(embeddings_file):
|
|
print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset")
|
|
compute_embeddings(
|
|
SPEAKER_ENCODER_CHECKPOINT_PATH,
|
|
SPEAKER_ENCODER_CONFIG_PATH,
|
|
embeddings_file,
|
|
old_speakers_file=None,
|
|
config_dataset_path=None,
|
|
formatter_name=dataset_conf.formatter,
|
|
dataset_name=dataset_conf.dataset_name,
|
|
dataset_path=dataset_conf.path,
|
|
meta_file_train=dataset_conf.meta_file_train,
|
|
meta_file_val=dataset_conf.meta_file_val,
|
|
disable_cuda=False,
|
|
no_eval=False,
|
|
)
|
|
D_VECTOR_FILES.append(embeddings_file)
|
|
|
|
|
|
|
|
audio_config = VitsAudioConfig(
|
|
sample_rate=SAMPLE_RATE,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
fft_size=1024,
|
|
mel_fmin=0.0,
|
|
mel_fmax=None,
|
|
num_mels=80,
|
|
)
|
|
|
|
|
|
model_args = VitsArgs(
|
|
spec_segment_size=62,
|
|
hidden_channels=192,
|
|
hidden_channels_ffn_text_encoder=768,
|
|
num_heads_text_encoder=2,
|
|
num_layers_text_encoder=10,
|
|
kernel_size_text_encoder=3,
|
|
dropout_p_text_encoder=0.1,
|
|
d_vector_file=D_VECTOR_FILES,
|
|
use_d_vector_file=True,
|
|
d_vector_dim=512,
|
|
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
|
|
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
|
|
resblock_type_decoder="2",
|
|
|
|
use_speaker_encoder_as_loss=False,
|
|
|
|
use_language_embedding=True,
|
|
embedded_language_dim=4,
|
|
)
|
|
|
|
|
|
config = VitsConfig(
|
|
output_path=OUT_PATH,
|
|
model_args=model_args,
|
|
run_name=RUN_NAME,
|
|
project_name="YourTTS",
|
|
run_description="""
|
|
- YourTTS trained using CML-TTS and LibriTTS datasets
|
|
""",
|
|
dashboard_logger="tensorboard",
|
|
logger_uri=None,
|
|
audio=audio_config,
|
|
batch_size=BATCH_SIZE,
|
|
batch_group_size=48,
|
|
eval_batch_size=BATCH_SIZE,
|
|
num_loader_workers=8,
|
|
eval_split_max_size=256,
|
|
print_step=50,
|
|
plot_step=100,
|
|
log_model_step=1000,
|
|
save_step=5000,
|
|
save_n_checkpoints=2,
|
|
save_checkpoints=True,
|
|
target_loss="loss_1",
|
|
print_eval=False,
|
|
use_phonemes=False,
|
|
phonemizer="espeak",
|
|
phoneme_language="en",
|
|
compute_input_seq_cache=True,
|
|
add_blank=True,
|
|
text_cleaner="multilingual_cleaners",
|
|
characters=CharactersConfig(
|
|
characters_class="TTS.tts.models.vits.VitsCharacters",
|
|
pad="_",
|
|
eos="&",
|
|
bos="*",
|
|
blank=None,
|
|
characters="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\u00a1\u00a3\u00b7\u00b8\u00c0\u00c1\u00c2\u00c3\u00c4\u00c5\u00c7\u00c8\u00c9\u00ca\u00cb\u00cc\u00cd\u00ce\u00cf\u00d1\u00d2\u00d3\u00d4\u00d5\u00d6\u00d9\u00da\u00db\u00dc\u00df\u00e0\u00e1\u00e2\u00e3\u00e4\u00e5\u00e7\u00e8\u00e9\u00ea\u00eb\u00ec\u00ed\u00ee\u00ef\u00f1\u00f2\u00f3\u00f4\u00f5\u00f6\u00f9\u00fa\u00fb\u00fc\u0101\u0104\u0105\u0106\u0107\u010b\u0119\u0141\u0142\u0143\u0144\u0152\u0153\u015a\u015b\u0161\u0178\u0179\u017a\u017b\u017c\u020e\u04e7\u05c2\u1b20",
|
|
punctuations="\u2014!'(),-.:;?\u00bf ",
|
|
phonemes="iy\u0268\u0289\u026fu\u026a\u028f\u028ae\u00f8\u0258\u0259\u0275\u0264o\u025b\u0153\u025c\u025e\u028c\u0254\u00e6\u0250a\u0276\u0251\u0252\u1d7b\u0298\u0253\u01c0\u0257\u01c3\u0284\u01c2\u0260\u01c1\u029bpbtd\u0288\u0256c\u025fk\u0261q\u0262\u0294\u0274\u014b\u0272\u0273n\u0271m\u0299r\u0280\u2c71\u027e\u027d\u0278\u03b2fv\u03b8\u00f0sz\u0283\u0292\u0282\u0290\u00e7\u029dx\u0263\u03c7\u0281\u0127\u0295h\u0266\u026c\u026e\u028b\u0279\u027bj\u0270l\u026d\u028e\u029f\u02c8\u02cc\u02d0\u02d1\u028dw\u0265\u029c\u02a2\u02a1\u0255\u0291\u027a\u0267\u025a\u02de\u026b'\u0303' ",
|
|
is_unique=True,
|
|
is_sorted=True,
|
|
),
|
|
phoneme_cache_path=None,
|
|
precompute_num_workers=12,
|
|
start_by_longest=True,
|
|
datasets=DATASETS_CONFIG_LIST,
|
|
cudnn_benchmark=False,
|
|
max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS,
|
|
mixed_precision=False,
|
|
test_sentences=[
|
|
["Voc\u00ea ter\u00e1 a vista do topo da montanha que voc\u00ea escalar.", "9351", None, "pt-br"],
|
|
["Quando voc\u00ea n\u00e3o corre nenhum risco, voc\u00ea arrisca tudo.", "12249", None, "pt-br"],
|
|
[
|
|
"S\u00e3o necess\u00e1rios muitos anos de trabalho para ter sucesso da noite para o dia.",
|
|
"2961",
|
|
None,
|
|
"pt-br",
|
|
],
|
|
["You'll have the view of the top of the mountain that you climb.", "LTTS_6574", None, "en"],
|
|
["When you don\u2019t take any risks, you risk everything.", "LTTS_6206", None, "en"],
|
|
["Are necessary too many years of work to succeed overnight.", "LTTS_5717", None, "en"],
|
|
["Je hebt uitzicht op de top van de berg die je beklimt.", "960", None, "du"],
|
|
["Als je geen risico neemt, riskeer je alles.", "2450", None, "du"],
|
|
["Zijn te veel jaren werk nodig om van de ene op de andere dag te slagen.", "10984", None, "du"],
|
|
["Vous aurez la vue sur le sommet de la montagne que vous gravirez.", "6381", None, "fr"],
|
|
["Quand tu ne prends aucun risque, tu risques tout.", "2825", None, "fr"],
|
|
[
|
|
"Sont n\u00e9cessaires trop d'ann\u00e9es de travail pour r\u00e9ussir du jour au lendemain.",
|
|
"1844",
|
|
None,
|
|
"fr",
|
|
],
|
|
["Sie haben die Aussicht auf die Spitze des Berges, den Sie erklimmen.", "2314", None, "ge"],
|
|
["Wer nichts riskiert, riskiert alles.", "7483", None, "ge"],
|
|
["Es sind zu viele Jahre Arbeit notwendig, um \u00fcber Nacht erfolgreich zu sein.", "12461", None, "ge"],
|
|
["Avrai la vista della cima della montagna che sali.", "4998", None, "it"],
|
|
["Quando non corri alcun rischio, rischi tutto.", "6744", None, "it"],
|
|
["Are necessary too many years of work to succeed overnight.", "1157", None, "it"],
|
|
[
|
|
"B\u0119dziesz mie\u0107 widok na szczyt g\u00f3ry, na kt\u00f3r\u0105 si\u0119 wspinasz.",
|
|
"7014",
|
|
None,
|
|
"pl",
|
|
],
|
|
["Kiedy nie podejmujesz \u017cadnego ryzyka, ryzykujesz wszystko.", "3492", None, "pl"],
|
|
[
|
|
"Potrzebne s\u0105 zbyt wiele lat pracy, aby odnie\u015b\u0107 sukces z dnia na dzie\u0144.",
|
|
"1890",
|
|
None,
|
|
"pl",
|
|
],
|
|
["Tendr\u00e1s la vista de la cima de la monta\u00f1a que subes", "101", None, "sp"],
|
|
["Cuando no te arriesgas, lo arriesgas todo.", "5922", None, "sp"],
|
|
[
|
|
"Son necesarios demasiados a\u00f1os de trabajo para triunfar de la noche a la ma\u00f1ana.",
|
|
"10246",
|
|
None,
|
|
"sp",
|
|
],
|
|
],
|
|
|
|
use_weighted_sampler=True,
|
|
|
|
|
|
weighted_sampler_attrs={"language": 1.0},
|
|
weighted_sampler_multipliers={
|
|
|
|
|
|
|
|
|
|
|
|
|
|
},
|
|
|
|
speaker_encoder_loss_alpha=9.0,
|
|
)
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples(
|
|
config.datasets,
|
|
eval_split=True,
|
|
eval_split_max_size=config.eval_split_max_size,
|
|
eval_split_size=config.eval_split_size,
|
|
)
|
|
|
|
|
|
model = Vits.init_from_config(config)
|
|
|
|
|
|
trainer = Trainer(
|
|
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH),
|
|
config,
|
|
output_path=OUT_PATH,
|
|
model=model,
|
|
train_samples=train_samples,
|
|
eval_samples=eval_samples,
|
|
)
|
|
trainer.fit()
|
|
|