|
import os
|
|
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
from TTS.config.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.delightful_tts import DelightfulTTS, DelightfulTtsArgs, VocoderConfig
|
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
|
from TTS.utils.audio.processor import AudioProcessor
|
|
|
|
data_path = ""
|
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
dataset_config = BaseDatasetConfig(
|
|
dataset_name="ljspeech", formatter="ljspeech", meta_file_train="metadata.csv", path=data_path
|
|
)
|
|
|
|
audio_config = DelightfulTtsAudioConfig()
|
|
model_args = DelightfulTtsArgs()
|
|
|
|
vocoder_config = VocoderConfig()
|
|
|
|
delightful_tts_config = DelightfulTTSConfig(
|
|
run_name="delightful_tts_ljspeech",
|
|
run_description="Train like in delightful tts paper.",
|
|
model_args=model_args,
|
|
audio=audio_config,
|
|
vocoder=vocoder_config,
|
|
batch_size=32,
|
|
eval_batch_size=16,
|
|
num_loader_workers=10,
|
|
num_eval_loader_workers=10,
|
|
precompute_num_workers=10,
|
|
batch_group_size=2,
|
|
compute_input_seq_cache=True,
|
|
compute_f0=True,
|
|
f0_cache_path=os.path.join(output_path, "f0_cache"),
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
epochs=1000,
|
|
text_cleaner="english_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
|
print_step=50,
|
|
print_eval=False,
|
|
mixed_precision=True,
|
|
output_path=output_path,
|
|
datasets=[dataset_config],
|
|
start_by_longest=False,
|
|
eval_split_size=0.1,
|
|
binary_align_loss_alpha=0.0,
|
|
use_attn_priors=False,
|
|
lr_gen=4e-1,
|
|
lr=4e-1,
|
|
lr_disc=4e-1,
|
|
max_text_len=130,
|
|
)
|
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(delightful_tts_config)
|
|
|
|
ap = AudioProcessor.init_from_config(config)
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples(
|
|
dataset_config,
|
|
eval_split=True,
|
|
eval_split_max_size=config.eval_split_max_size,
|
|
eval_split_size=config.eval_split_size,
|
|
)
|
|
|
|
model = DelightfulTTS(ap=ap, config=config, tokenizer=tokenizer, speaker_manager=None)
|
|
|
|
trainer = Trainer(
|
|
TrainerArgs(),
|
|
config,
|
|
output_path,
|
|
model=model,
|
|
train_samples=train_samples,
|
|
eval_samples=eval_samples,
|
|
)
|
|
|
|
trainer.fit()
|
|
|