|
import copy
|
|
from abc import abstractmethod
|
|
from typing import Dict, Tuple
|
|
|
|
import torch
|
|
from coqpit import Coqpit
|
|
from torch import nn
|
|
|
|
from TTS.tts.layers.losses import TacotronLoss
|
|
from TTS.tts.models.base_tts import BaseTTS
|
|
from TTS.tts.utils.helpers import sequence_mask
|
|
from TTS.tts.utils.speakers import SpeakerManager
|
|
from TTS.tts.utils.synthesis import synthesis
|
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
|
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
|
from TTS.utils.generic_utils import format_aux_input
|
|
from TTS.utils.io import load_fsspec
|
|
from TTS.utils.training import gradual_training_scheduler
|
|
|
|
|
|
class BaseTacotron(BaseTTS):
|
|
"""Base class shared by Tacotron and Tacotron2"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: "TacotronConfig",
|
|
ap: "AudioProcessor",
|
|
tokenizer: "TTSTokenizer",
|
|
speaker_manager: SpeakerManager = None,
|
|
):
|
|
super().__init__(config, ap, tokenizer, speaker_manager)
|
|
|
|
|
|
for key in config:
|
|
setattr(self, key, config[key])
|
|
|
|
|
|
self.embedding = None
|
|
self.encoder = None
|
|
self.decoder = None
|
|
self.postnet = None
|
|
|
|
|
|
self.embedded_speakers = None
|
|
self.embedded_speakers_projected = None
|
|
|
|
|
|
if self.gst and self.use_gst:
|
|
self.decoder_in_features += self.gst.gst_embedding_dim
|
|
self.gst_layer = None
|
|
|
|
|
|
if self.capacitron_vae and self.use_capacitron_vae:
|
|
self.decoder_in_features += self.capacitron_vae.capacitron_VAE_embedding_dim
|
|
self.capacitron_vae_layer = None
|
|
|
|
|
|
self.decoder_backward = None
|
|
self.coarse_decoder = None
|
|
|
|
@staticmethod
|
|
def _format_aux_input(aux_input: Dict) -> Dict:
|
|
"""Set missing fields to their default values"""
|
|
if aux_input:
|
|
return format_aux_input({"d_vectors": None, "speaker_ids": None}, aux_input)
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
def _init_backward_decoder(self):
|
|
"""Init the backward decoder for Forward-Backward decoding."""
|
|
self.decoder_backward = copy.deepcopy(self.decoder)
|
|
|
|
def _init_coarse_decoder(self):
|
|
"""Init the coarse decoder for Double-Decoder Consistency."""
|
|
self.coarse_decoder = copy.deepcopy(self.decoder)
|
|
self.coarse_decoder.r_init = self.ddc_r
|
|
self.coarse_decoder.set_r(self.ddc_r)
|
|
|
|
|
|
|
|
|
|
|
|
@abstractmethod
|
|
def forward(self):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def inference(self):
|
|
pass
|
|
|
|
def load_checkpoint(
|
|
self, config, checkpoint_path, eval=False, cache=False
|
|
):
|
|
"""Load model checkpoint and set up internals.
|
|
|
|
Args:
|
|
config (Coqpi): model configuration.
|
|
checkpoint_path (str): path to checkpoint file.
|
|
eval (bool, optional): whether to load model for evaluation.
|
|
cache (bool, optional): If True, cache the file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to False.
|
|
"""
|
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
|
|
self.load_state_dict(state["model"])
|
|
|
|
if "r" in state:
|
|
|
|
self.decoder.set_r(state["r"])
|
|
elif "config" in state:
|
|
|
|
self.decoder.set_r(state["config"]["r"])
|
|
else:
|
|
|
|
self.decoder.set_r(config.r)
|
|
if eval:
|
|
self.eval()
|
|
print(f" > Model's reduction rate `r` is set to: {self.decoder.r}")
|
|
assert not self.training
|
|
|
|
def get_criterion(self) -> nn.Module:
|
|
"""Get the model criterion used in training."""
|
|
return TacotronLoss(self.config)
|
|
|
|
@staticmethod
|
|
def init_from_config(config: Coqpit):
|
|
"""Initialize model from config."""
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
ap = AudioProcessor.init_from_config(config)
|
|
tokenizer = TTSTokenizer.init_from_config(config)
|
|
speaker_manager = SpeakerManager.init_from_config(config)
|
|
return BaseTacotron(config, ap, tokenizer, speaker_manager)
|
|
|
|
|
|
|
|
|
|
|
|
def test_run(self, assets: Dict) -> Tuple[Dict, Dict]:
|
|
"""Generic test run for `tts` models used by `Trainer`.
|
|
|
|
You can override this for a different behaviour.
|
|
|
|
Args:
|
|
assets (dict): A dict of training assets. For `tts` models, it must include `{'audio_processor': ap}`.
|
|
|
|
Returns:
|
|
Tuple[Dict, Dict]: Test figures and audios to be projected to Tensorboard.
|
|
"""
|
|
print(" | > Synthesizing test sentences.")
|
|
test_audios = {}
|
|
test_figures = {}
|
|
test_sentences = self.config.test_sentences
|
|
aux_inputs = self._get_test_aux_input()
|
|
for idx, sen in enumerate(test_sentences):
|
|
outputs_dict = synthesis(
|
|
self,
|
|
sen,
|
|
self.config,
|
|
"cuda" in str(next(self.parameters()).device),
|
|
speaker_id=aux_inputs["speaker_id"],
|
|
d_vector=aux_inputs["d_vector"],
|
|
style_wav=aux_inputs["style_wav"],
|
|
use_griffin_lim=True,
|
|
do_trim_silence=False,
|
|
)
|
|
test_audios["{}-audio".format(idx)] = outputs_dict["wav"]
|
|
test_figures["{}-prediction".format(idx)] = plot_spectrogram(
|
|
outputs_dict["outputs"]["model_outputs"], self.ap, output_fig=False
|
|
)
|
|
test_figures["{}-alignment".format(idx)] = plot_alignment(
|
|
outputs_dict["outputs"]["alignments"], output_fig=False
|
|
)
|
|
return {"figures": test_figures, "audios": test_audios}
|
|
|
|
def test_log(
|
|
self, outputs: dict, logger: "Logger", assets: dict, steps: int
|
|
) -> None:
|
|
logger.test_audios(steps, outputs["audios"], self.ap.sample_rate)
|
|
logger.test_figures(steps, outputs["figures"])
|
|
|
|
|
|
|
|
|
|
|
|
def compute_masks(self, text_lengths, mel_lengths):
|
|
"""Compute masks against sequence paddings."""
|
|
|
|
input_mask = sequence_mask(text_lengths)
|
|
output_mask = None
|
|
if mel_lengths is not None:
|
|
max_len = mel_lengths.max()
|
|
r = self.decoder.r
|
|
max_len = max_len + (r - (max_len % r)) if max_len % r > 0 else max_len
|
|
output_mask = sequence_mask(mel_lengths, max_len=max_len)
|
|
return input_mask, output_mask
|
|
|
|
def _backward_pass(self, mel_specs, encoder_outputs, mask):
|
|
"""Run backwards decoder"""
|
|
decoder_outputs_b, alignments_b, _ = self.decoder_backward(
|
|
encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask
|
|
)
|
|
decoder_outputs_b = decoder_outputs_b.transpose(1, 2).contiguous()
|
|
return decoder_outputs_b, alignments_b
|
|
|
|
def _coarse_decoder_pass(self, mel_specs, encoder_outputs, alignments, input_mask):
|
|
"""Double Decoder Consistency"""
|
|
T = mel_specs.shape[1]
|
|
if T % self.coarse_decoder.r > 0:
|
|
padding_size = self.coarse_decoder.r - (T % self.coarse_decoder.r)
|
|
mel_specs = torch.nn.functional.pad(mel_specs, (0, 0, 0, padding_size, 0, 0))
|
|
decoder_outputs_backward, alignments_backward, _ = self.coarse_decoder(
|
|
encoder_outputs.detach(), mel_specs, input_mask
|
|
)
|
|
|
|
alignments_backward = torch.nn.functional.interpolate(
|
|
alignments_backward.transpose(1, 2),
|
|
size=alignments.shape[1],
|
|
mode="nearest",
|
|
).transpose(1, 2)
|
|
decoder_outputs_backward = decoder_outputs_backward.transpose(1, 2)
|
|
decoder_outputs_backward = decoder_outputs_backward[:, :T, :]
|
|
return decoder_outputs_backward, alignments_backward
|
|
|
|
|
|
|
|
|
|
|
|
def compute_gst(self, inputs, style_input, speaker_embedding=None):
|
|
"""Compute global style token"""
|
|
if isinstance(style_input, dict):
|
|
|
|
query = torch.zeros(1, 1, self.gst.gst_embedding_dim // 2).type_as(inputs)
|
|
if speaker_embedding is not None:
|
|
query = torch.cat([query, speaker_embedding.reshape(1, 1, -1)], dim=-1)
|
|
|
|
_GST = torch.tanh(self.gst_layer.style_token_layer.style_tokens)
|
|
gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs)
|
|
for k_token, v_amplifier in style_input.items():
|
|
key = _GST[int(k_token)].unsqueeze(0).expand(1, -1, -1)
|
|
gst_outputs_att = self.gst_layer.style_token_layer.attention(query, key)
|
|
gst_outputs = gst_outputs + gst_outputs_att * v_amplifier
|
|
elif style_input is None:
|
|
|
|
gst_outputs = torch.zeros(1, 1, self.gst.gst_embedding_dim).type_as(inputs)
|
|
else:
|
|
|
|
gst_outputs = self.gst_layer(style_input, speaker_embedding)
|
|
inputs = self._concat_speaker_embedding(inputs, gst_outputs)
|
|
return inputs
|
|
|
|
def compute_capacitron_VAE_embedding(self, inputs, reference_mel_info, text_info=None, speaker_embedding=None):
|
|
"""Capacitron Variational Autoencoder"""
|
|
(
|
|
VAE_outputs,
|
|
posterior_distribution,
|
|
prior_distribution,
|
|
capacitron_beta,
|
|
) = self.capacitron_vae_layer(
|
|
reference_mel_info,
|
|
text_info,
|
|
speaker_embedding,
|
|
)
|
|
|
|
VAE_outputs = VAE_outputs.to(inputs.device)
|
|
encoder_output = self._concat_speaker_embedding(
|
|
inputs, VAE_outputs
|
|
)
|
|
return (
|
|
encoder_output,
|
|
posterior_distribution,
|
|
prior_distribution,
|
|
capacitron_beta,
|
|
)
|
|
|
|
@staticmethod
|
|
def _add_speaker_embedding(outputs, embedded_speakers):
|
|
embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1)
|
|
outputs = outputs + embedded_speakers_
|
|
return outputs
|
|
|
|
@staticmethod
|
|
def _concat_speaker_embedding(outputs, embedded_speakers):
|
|
embedded_speakers_ = embedded_speakers.expand(outputs.size(0), outputs.size(1), -1)
|
|
outputs = torch.cat([outputs, embedded_speakers_], dim=-1)
|
|
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
def on_epoch_start(self, trainer):
|
|
"""Callback for setting values wrt gradual training schedule.
|
|
|
|
Args:
|
|
trainer (TrainerTTS): TTS trainer object that is used to train this model.
|
|
"""
|
|
if self.gradual_training:
|
|
r, trainer.config.batch_size = gradual_training_scheduler(trainer.total_steps_done, trainer.config)
|
|
trainer.config.r = r
|
|
self.decoder.set_r(r)
|
|
if trainer.config.bidirectional_decoder:
|
|
trainer.model.decoder_backward.set_r(r)
|
|
print(f"\n > Number of output frames: {self.decoder.r}")
|
|
|