|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from torch import nn
|
|
|
|
|
|
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
|
|
def cast_tuple(val, depth=1):
|
|
if isinstance(val, list):
|
|
val = tuple(val)
|
|
return val if isinstance(val, tuple) else (val,) * depth
|
|
|
|
|
|
def max_neg_value(t):
|
|
return -torch.finfo(t.dtype).max
|
|
|
|
|
|
def stable_softmax(t, dim=-1, alpha=32**2):
|
|
t = t / alpha
|
|
t = t - torch.amax(t, dim=dim, keepdim=True).detach()
|
|
return (t * alpha).softmax(dim=dim)
|
|
|
|
|
|
def route_args(router, args, depth):
|
|
routed_args = [(dict(), dict()) for _ in range(depth)]
|
|
matched_keys = [key for key in args.keys() if key in router]
|
|
|
|
for key in matched_keys:
|
|
val = args[key]
|
|
for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])):
|
|
new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes)
|
|
routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args})
|
|
return routed_args
|
|
|
|
|
|
|
|
class SequentialSequence(nn.Module):
|
|
def __init__(self, layers, args_route={}, layer_dropout=0.0):
|
|
super().__init__()
|
|
assert all(
|
|
len(route) == len(layers) for route in args_route.values()
|
|
), "each argument route map must have the same depth as the number of sequential layers"
|
|
self.layers = layers
|
|
self.args_route = args_route
|
|
self.layer_dropout = layer_dropout
|
|
|
|
def forward(self, x, **kwargs):
|
|
args = route_args(self.args_route, kwargs, len(self.layers))
|
|
layers_and_args = list(zip(self.layers, args))
|
|
|
|
for (f, g), (f_args, g_args) in layers_and_args:
|
|
x = x + f(x, **f_args)
|
|
x = x + g(x, **g_args)
|
|
return x
|
|
|
|
|
|
class DivideMax(nn.Module):
|
|
def __init__(self, dim):
|
|
super().__init__()
|
|
self.dim = dim
|
|
|
|
def forward(self, x):
|
|
maxes = x.amax(dim=self.dim, keepdim=True).detach()
|
|
return x / maxes
|
|
|
|
|
|
|
|
class LayerScale(nn.Module):
|
|
def __init__(self, dim, depth, fn):
|
|
super().__init__()
|
|
if depth <= 18:
|
|
init_eps = 0.1
|
|
elif depth > 18 and depth <= 24:
|
|
init_eps = 1e-5
|
|
else:
|
|
init_eps = 1e-6
|
|
|
|
scale = torch.zeros(1, 1, dim).fill_(init_eps)
|
|
self.scale = nn.Parameter(scale)
|
|
self.fn = fn
|
|
|
|
def forward(self, x, **kwargs):
|
|
return self.fn(x, **kwargs) * self.scale
|
|
|
|
|
|
|
|
|
|
|
|
class PreNorm(nn.Module):
|
|
def __init__(self, dim, fn, sandwich=False):
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.norm_out = nn.LayerNorm(dim) if sandwich else nn.Identity()
|
|
self.fn = fn
|
|
|
|
def forward(self, x, **kwargs):
|
|
x = self.norm(x)
|
|
x = self.fn(x, **kwargs)
|
|
return self.norm_out(x)
|
|
|
|
|
|
|
|
|
|
|
|
class GEGLU(nn.Module):
|
|
def forward(self, x):
|
|
x, gates = x.chunk(2, dim=-1)
|
|
return x * F.gelu(gates)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dropout=0.0, mult=4.0):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(dim, dim * mult * 2),
|
|
GEGLU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(dim * mult, dim),
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, seq_len, causal=True, heads=8, dim_head=64, dropout=0.0):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
self.heads = heads
|
|
self.seq_len = seq_len
|
|
self.scale = dim_head**-0.5
|
|
|
|
self.causal = causal
|
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
|
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
|
|
|
def forward(self, x, mask=None):
|
|
b, n, _, h, device = *x.shape, self.heads, x.device
|
|
softmax = torch.softmax
|
|
|
|
qkv = self.to_qkv(x).chunk(3, dim=-1)
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), qkv)
|
|
|
|
q = q * self.scale
|
|
|
|
dots = torch.einsum("b h i d, b h j d -> b h i j", q, k)
|
|
mask_value = max_neg_value(dots)
|
|
|
|
if exists(mask):
|
|
mask = rearrange(mask, "b j -> b () () j")
|
|
dots.masked_fill_(~mask, mask_value)
|
|
del mask
|
|
|
|
if self.causal:
|
|
i, j = dots.shape[-2:]
|
|
mask = torch.ones(i, j, device=device).triu_(j - i + 1).bool()
|
|
dots.masked_fill_(mask, mask_value)
|
|
|
|
attn = softmax(dots, dim=-1)
|
|
|
|
out = torch.einsum("b h i j, b h j d -> b h i d", attn, v)
|
|
out = rearrange(out, "b h n d -> b n (h d)")
|
|
out = self.to_out(out)
|
|
return out
|
|
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
depth,
|
|
seq_len,
|
|
causal=True,
|
|
heads=8,
|
|
dim_head=64,
|
|
ff_mult=4,
|
|
attn_dropout=0.0,
|
|
ff_dropout=0.0,
|
|
sparse_attn=False,
|
|
sandwich_norm=False,
|
|
):
|
|
super().__init__()
|
|
layers = nn.ModuleList([])
|
|
sparse_layer = cast_tuple(sparse_attn, depth)
|
|
|
|
for ind, sparse_attn in zip(range(depth), sparse_layer):
|
|
attn = Attention(
|
|
dim,
|
|
causal=causal,
|
|
seq_len=seq_len,
|
|
heads=heads,
|
|
dim_head=dim_head,
|
|
dropout=attn_dropout,
|
|
)
|
|
|
|
ff = FeedForward(dim, mult=ff_mult, dropout=ff_dropout)
|
|
|
|
layers.append(
|
|
nn.ModuleList(
|
|
[
|
|
LayerScale(dim, ind + 1, PreNorm(dim, attn, sandwich=sandwich_norm)),
|
|
LayerScale(dim, ind + 1, PreNorm(dim, ff, sandwich=sandwich_norm)),
|
|
]
|
|
)
|
|
)
|
|
|
|
execute_type = SequentialSequence
|
|
route_attn = ((True, False),) * depth
|
|
attn_route_map = {"mask": route_attn}
|
|
|
|
self.layers = execute_type(layers, args_route=attn_route_map)
|
|
|
|
def forward(self, x, **kwargs):
|
|
return self.layers(x, **kwargs)
|
|
|