|
import os
|
|
from glob import glob
|
|
from typing import Dict, List
|
|
|
|
import librosa
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio
|
|
from scipy.io.wavfile import read
|
|
|
|
from TTS.utils.audio.torch_transforms import TorchSTFT
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
sampling_rate, data = read(full_path)
|
|
if data.dtype == np.int32:
|
|
norm_fix = 2**31
|
|
elif data.dtype == np.int16:
|
|
norm_fix = 2**15
|
|
elif data.dtype == np.float16 or data.dtype == np.float32:
|
|
norm_fix = 1.0
|
|
else:
|
|
raise NotImplementedError(f"Provided data dtype not supported: {data.dtype}")
|
|
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate)
|
|
|
|
|
|
def check_audio(audio, audiopath: str):
|
|
|
|
|
|
if torch.any(audio > 2) or not torch.any(audio < 0):
|
|
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
|
|
audio.clip_(-1, 1)
|
|
|
|
|
|
def read_audio_file(audiopath: str):
|
|
if audiopath[-4:] == ".wav":
|
|
audio, lsr = load_wav_to_torch(audiopath)
|
|
elif audiopath[-4:] == ".mp3":
|
|
audio, lsr = librosa.load(audiopath, sr=None)
|
|
audio = torch.FloatTensor(audio)
|
|
else:
|
|
assert False, f"Unsupported audio format provided: {audiopath[-4:]}"
|
|
|
|
|
|
if len(audio.shape) > 1:
|
|
if audio.shape[0] < 5:
|
|
audio = audio[0]
|
|
else:
|
|
assert audio.shape[1] < 5
|
|
audio = audio[:, 0]
|
|
|
|
return audio, lsr
|
|
|
|
|
|
def load_required_audio(audiopath: str):
|
|
audio, lsr = read_audio_file(audiopath)
|
|
|
|
audios = [torchaudio.functional.resample(audio, lsr, sampling_rate) for sampling_rate in (22050, 24000)]
|
|
for audio in audios:
|
|
check_audio(audio, audiopath)
|
|
|
|
return [audio.unsqueeze(0) for audio in audios]
|
|
|
|
|
|
def load_audio(audiopath, sampling_rate):
|
|
audio, lsr = read_audio_file(audiopath)
|
|
|
|
if lsr != sampling_rate:
|
|
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
|
|
check_audio(audio, audiopath)
|
|
|
|
return audio.unsqueeze(0)
|
|
|
|
|
|
TACOTRON_MEL_MAX = 2.3143386840820312
|
|
TACOTRON_MEL_MIN = -11.512925148010254
|
|
|
|
|
|
def denormalize_tacotron_mel(norm_mel):
|
|
return ((norm_mel + 1) / 2) * (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN) + TACOTRON_MEL_MIN
|
|
|
|
|
|
def normalize_tacotron_mel(mel):
|
|
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1
|
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor
|
|
"""
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
def dynamic_range_decompression(x, C=1):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor used to compress
|
|
"""
|
|
return torch.exp(x) / C
|
|
|
|
|
|
def get_voices(extra_voice_dirs: List[str] = []):
|
|
dirs = extra_voice_dirs
|
|
voices: Dict[str, List[str]] = {}
|
|
for d in dirs:
|
|
subs = os.listdir(d)
|
|
for sub in subs:
|
|
subj = os.path.join(d, sub)
|
|
if os.path.isdir(subj):
|
|
voices[sub] = list(glob(f"{subj}/*.wav")) + list(glob(f"{subj}/*.mp3")) + list(glob(f"{subj}/*.pth"))
|
|
return voices
|
|
|
|
|
|
def load_voice(voice: str, extra_voice_dirs: List[str] = []):
|
|
if voice == "random":
|
|
return None, None
|
|
|
|
voices = get_voices(extra_voice_dirs)
|
|
paths = voices[voice]
|
|
if len(paths) == 1 and paths[0].endswith(".pth"):
|
|
return None, torch.load(paths[0])
|
|
else:
|
|
conds = []
|
|
for cond_path in paths:
|
|
c = load_required_audio(cond_path)
|
|
conds.append(c)
|
|
return conds, None
|
|
|
|
|
|
def load_voices(voices: List[str], extra_voice_dirs: List[str] = []):
|
|
latents = []
|
|
clips = []
|
|
for voice in voices:
|
|
if voice == "random":
|
|
if len(voices) > 1:
|
|
print("Cannot combine a random voice with a non-random voice. Just using a random voice.")
|
|
return None, None
|
|
clip, latent = load_voice(voice, extra_voice_dirs)
|
|
if latent is None:
|
|
assert (
|
|
len(latents) == 0
|
|
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this."
|
|
clips.extend(clip)
|
|
elif clip is None:
|
|
assert (
|
|
len(clips) == 0
|
|
), "Can only combine raw audio voices or latent voices, not both. Do it yourself if you want this."
|
|
latents.append(latent)
|
|
if len(latents) == 0:
|
|
return clips, None
|
|
else:
|
|
latents_0 = torch.stack([l[0] for l in latents], dim=0).mean(dim=0)
|
|
latents_1 = torch.stack([l[1] for l in latents], dim=0).mean(dim=0)
|
|
latents = (latents_0, latents_1)
|
|
return None, latents
|
|
|
|
|
|
def wav_to_univnet_mel(wav, do_normalization=False, device="cuda"):
|
|
stft = TorchSTFT(
|
|
n_fft=1024,
|
|
hop_length=256,
|
|
win_length=1024,
|
|
use_mel=True,
|
|
n_mels=100,
|
|
sample_rate=24000,
|
|
mel_fmin=0,
|
|
mel_fmax=12000,
|
|
)
|
|
stft = stft.to(device)
|
|
mel = stft(wav)
|
|
mel = dynamic_range_compression(mel)
|
|
if do_normalization:
|
|
mel = normalize_tacotron_mel(mel)
|
|
return mel
|
|
|