|
import math
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from TTS.tts.layers.generic.normalization import LayerNorm, LayerNorm2
|
|
|
|
|
|
class RelativePositionMultiHeadAttention(nn.Module):
|
|
"""Multi-head attention with Relative Positional embedding.
|
|
https://arxiv.org/pdf/1809.04281.pdf
|
|
|
|
It learns positional embeddings for a window of neighbours. For keys and values,
|
|
it learns different set of embeddings. Key embeddings are agregated with the attention
|
|
scores and value embeddings are aggregated with the output.
|
|
|
|
Note:
|
|
Example with relative attention window size 2
|
|
|
|
- input = [a, b, c, d, e]
|
|
- rel_attn_embeddings = [e(t-2), e(t-1), e(t+1), e(t+2)]
|
|
|
|
So it learns 4 embedding vectors (in total 8) separately for key and value vectors.
|
|
|
|
Considering the input c
|
|
|
|
- e(t-2) corresponds to c -> a
|
|
- e(t-2) corresponds to c -> b
|
|
- e(t-2) corresponds to c -> d
|
|
- e(t-2) corresponds to c -> e
|
|
|
|
These embeddings are shared among different time steps. So input a, b, d and e also uses
|
|
the same embeddings.
|
|
|
|
Embeddings are ignored when the relative window is out of limit for the first and the last
|
|
n items.
|
|
|
|
Args:
|
|
channels (int): input and inner layer channels.
|
|
out_channels (int): output channels.
|
|
num_heads (int): number of attention heads.
|
|
rel_attn_window_size (int, optional): relation attention window size.
|
|
If 4, for each time step next and previous 4 time steps are attended.
|
|
If default, relative encoding is disabled and it is a regular transformer.
|
|
Defaults to None.
|
|
heads_share (bool, optional): [description]. Defaults to True.
|
|
dropout_p (float, optional): dropout rate. Defaults to 0..
|
|
input_length (int, optional): intput length for positional encoding. Defaults to None.
|
|
proximal_bias (bool, optional): enable/disable proximal bias as in the paper. Defaults to False.
|
|
proximal_init (bool, optional): enable/disable poximal init as in the paper.
|
|
Init key and query layer weights the same. Defaults to False.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
out_channels,
|
|
num_heads,
|
|
rel_attn_window_size=None,
|
|
heads_share=True,
|
|
dropout_p=0.0,
|
|
input_length=None,
|
|
proximal_bias=False,
|
|
proximal_init=False,
|
|
):
|
|
super().__init__()
|
|
assert channels % num_heads == 0, " [!] channels should be divisible by num_heads."
|
|
|
|
self.channels = channels
|
|
self.out_channels = out_channels
|
|
self.num_heads = num_heads
|
|
self.rel_attn_window_size = rel_attn_window_size
|
|
self.heads_share = heads_share
|
|
self.input_length = input_length
|
|
self.proximal_bias = proximal_bias
|
|
self.dropout_p = dropout_p
|
|
self.attn = None
|
|
|
|
self.k_channels = channels // num_heads
|
|
self.conv_q = nn.Conv1d(channels, channels, 1)
|
|
self.conv_k = nn.Conv1d(channels, channels, 1)
|
|
self.conv_v = nn.Conv1d(channels, channels, 1)
|
|
|
|
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
|
self.dropout = nn.Dropout(dropout_p)
|
|
|
|
if rel_attn_window_size is not None:
|
|
n_heads_rel = 1 if heads_share else num_heads
|
|
rel_stddev = self.k_channels**-0.5
|
|
emb_rel_k = nn.Parameter(
|
|
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
|
|
)
|
|
emb_rel_v = nn.Parameter(
|
|
torch.randn(n_heads_rel, rel_attn_window_size * 2 + 1, self.k_channels) * rel_stddev
|
|
)
|
|
self.register_parameter("emb_rel_k", emb_rel_k)
|
|
self.register_parameter("emb_rel_v", emb_rel_v)
|
|
|
|
|
|
nn.init.xavier_uniform_(self.conv_q.weight)
|
|
nn.init.xavier_uniform_(self.conv_k.weight)
|
|
|
|
if proximal_init:
|
|
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
|
|
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
|
|
nn.init.xavier_uniform_(self.conv_v.weight)
|
|
|
|
def forward(self, x, c, attn_mask=None):
|
|
"""
|
|
Shapes:
|
|
- x: :math:`[B, C, T]`
|
|
- c: :math:`[B, C, T]`
|
|
- attn_mask: :math:`[B, 1, T, T]`
|
|
"""
|
|
q = self.conv_q(x)
|
|
k = self.conv_k(c)
|
|
v = self.conv_v(c)
|
|
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
|
x = self.conv_o(x)
|
|
return x
|
|
|
|
def attention(self, query, key, value, mask=None):
|
|
|
|
b, d, t_s, t_t = (*key.size(), query.size(2))
|
|
query = query.view(b, self.num_heads, self.k_channels, t_t).transpose(2, 3)
|
|
key = key.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
|
|
value = value.view(b, self.num_heads, self.k_channels, t_s).transpose(2, 3)
|
|
|
|
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
|
|
|
|
if self.rel_attn_window_size is not None:
|
|
assert t_s == t_t, "Relative attention is only available for self-attention."
|
|
|
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
|
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
|
|
rel_logits = self._relative_position_to_absolute_position(rel_logits)
|
|
scores_local = rel_logits / math.sqrt(self.k_channels)
|
|
scores = scores + scores_local
|
|
|
|
if self.proximal_bias:
|
|
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
|
scores = scores + self._attn_proximity_bias(t_s).to(device=scores.device, dtype=scores.dtype)
|
|
|
|
if mask is not None:
|
|
|
|
scores = scores.masked_fill(mask == 0, -1e4)
|
|
if self.input_length is not None:
|
|
block_mask = torch.ones_like(scores).triu(-1 * self.input_length).tril(self.input_length)
|
|
scores = scores * block_mask + -1e4 * (1 - block_mask)
|
|
|
|
p_attn = F.softmax(scores, dim=-1)
|
|
|
|
p_attn = self.dropout(p_attn)
|
|
|
|
output = torch.matmul(p_attn, value)
|
|
|
|
if self.rel_attn_window_size is not None:
|
|
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
|
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t)
|
|
return output, p_attn
|
|
|
|
@staticmethod
|
|
def _matmul_with_relative_values(p_attn, re):
|
|
"""
|
|
Args:
|
|
p_attn (Tensor): attention weights.
|
|
re (Tensor): relative value embedding vector. (a_(i,j)^V)
|
|
|
|
Shapes:
|
|
-p_attn: :math:`[B, H, T, V]`
|
|
-re: :math:`[H or 1, V, D]`
|
|
-logits: :math:`[B, H, T, D]`
|
|
"""
|
|
logits = torch.matmul(p_attn, re.unsqueeze(0))
|
|
return logits
|
|
|
|
@staticmethod
|
|
def _matmul_with_relative_keys(query, re):
|
|
"""
|
|
Args:
|
|
query (Tensor): batch of query vectors. (x*W^Q)
|
|
re (Tensor): relative key embedding vector. (a_(i,j)^K)
|
|
|
|
Shapes:
|
|
- query: :math:`[B, H, T, D]`
|
|
- re: :math:`[H or 1, V, D]`
|
|
- logits: :math:`[B, H, T, V]`
|
|
"""
|
|
|
|
logits = torch.matmul(query, re.unsqueeze(0).transpose(-2, -1))
|
|
return logits
|
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length):
|
|
"""Convert embedding vestors to a tensor of embeddings"""
|
|
|
|
pad_length = max(length - (self.rel_attn_window_size + 1), 0)
|
|
slice_start_position = max((self.rel_attn_window_size + 1) - length, 0)
|
|
slice_end_position = slice_start_position + 2 * length - 1
|
|
if pad_length > 0:
|
|
padded_relative_embeddings = F.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
|
|
else:
|
|
padded_relative_embeddings = relative_embeddings
|
|
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
|
|
return used_relative_embeddings
|
|
|
|
@staticmethod
|
|
def _relative_position_to_absolute_position(x):
|
|
"""Converts tensor from relative to absolute indexing for local attention.
|
|
Shapes:
|
|
x: :math:`[B, C, T, 2 * T - 1]`
|
|
Returns:
|
|
A Tensor of shape :math:`[B, C, T, T]`
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
|
|
x = F.pad(x, [0, 1, 0, 0, 0, 0, 0, 0])
|
|
|
|
x_flat = x.view([batch, heads, length * 2 * length])
|
|
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
|
|
|
|
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
|
|
return x_final
|
|
|
|
@staticmethod
|
|
def _absolute_position_to_relative_position(x):
|
|
"""
|
|
Shapes:
|
|
- x: :math:`[B, C, T, T]`
|
|
- ret: :math:`[B, C, T, 2*T-1]`
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
|
|
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
|
|
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
|
|
|
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
|
|
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
|
return x_final
|
|
|
|
@staticmethod
|
|
def _attn_proximity_bias(length):
|
|
"""Produce an attention mask that discourages distant
|
|
attention values.
|
|
Args:
|
|
length (int): an integer scalar.
|
|
Returns:
|
|
a Tensor with shape :math:`[1, 1, T, T]`
|
|
"""
|
|
|
|
r = torch.arange(length, dtype=torch.float32)
|
|
|
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
|
|
|
diff = -torch.log1p(torch.abs(diff))
|
|
|
|
return diff.unsqueeze(0).unsqueeze(0)
|
|
|
|
|
|
class FeedForwardNetwork(nn.Module):
|
|
"""Feed Forward Inner layers for Transformer.
|
|
|
|
Args:
|
|
in_channels (int): input tensor channels.
|
|
out_channels (int): output tensor channels.
|
|
hidden_channels (int): inner layers hidden channels.
|
|
kernel_size (int): conv1d filter kernel size.
|
|
dropout_p (float, optional): dropout rate. Defaults to 0.
|
|
"""
|
|
|
|
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dropout_p=0.0, causal=False):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dropout_p = dropout_p
|
|
|
|
if causal:
|
|
self.padding = self._causal_padding
|
|
else:
|
|
self.padding = self._same_padding
|
|
|
|
self.conv_1 = nn.Conv1d(in_channels, hidden_channels, kernel_size)
|
|
self.conv_2 = nn.Conv1d(hidden_channels, out_channels, kernel_size)
|
|
self.dropout = nn.Dropout(dropout_p)
|
|
|
|
def forward(self, x, x_mask):
|
|
x = self.conv_1(self.padding(x * x_mask))
|
|
x = torch.relu(x)
|
|
x = self.dropout(x)
|
|
x = self.conv_2(self.padding(x * x_mask))
|
|
return x * x_mask
|
|
|
|
def _causal_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l = self.kernel_size - 1
|
|
pad_r = 0
|
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
|
x = F.pad(x, self._pad_shape(padding))
|
|
return x
|
|
|
|
def _same_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l = (self.kernel_size - 1) // 2
|
|
pad_r = self.kernel_size // 2
|
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
|
x = F.pad(x, self._pad_shape(padding))
|
|
return x
|
|
|
|
@staticmethod
|
|
def _pad_shape(padding):
|
|
l = padding[::-1]
|
|
pad_shape = [item for sublist in l for item in sublist]
|
|
return pad_shape
|
|
|
|
|
|
class RelativePositionTransformer(nn.Module):
|
|
"""Transformer with Relative Potional Encoding.
|
|
https://arxiv.org/abs/1803.02155
|
|
|
|
Args:
|
|
in_channels (int): number of channels of the input tensor.
|
|
out_chanels (int): number of channels of the output tensor.
|
|
hidden_channels (int): model hidden channels.
|
|
hidden_channels_ffn (int): hidden channels of FeedForwardNetwork.
|
|
num_heads (int): number of attention heads.
|
|
num_layers (int): number of transformer layers.
|
|
kernel_size (int, optional): kernel size of feed-forward inner layers. Defaults to 1.
|
|
dropout_p (float, optional): dropout rate for self-attention and feed-forward inner layers_per_stack. Defaults to 0.
|
|
rel_attn_window_size (int, optional): relation attention window size.
|
|
If 4, for each time step next and previous 4 time steps are attended.
|
|
If default, relative encoding is disabled and it is a regular transformer.
|
|
Defaults to None.
|
|
input_length (int, optional): input lenght to limit position encoding. Defaults to None.
|
|
layer_norm_type (str, optional): type "1" uses torch tensor operations and type "2" uses torch layer_norm
|
|
primitive. Use type "2", type "1: is for backward compat. Defaults to "1".
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
hidden_channels: int,
|
|
hidden_channels_ffn: int,
|
|
num_heads: int,
|
|
num_layers: int,
|
|
kernel_size=1,
|
|
dropout_p=0.0,
|
|
rel_attn_window_size: int = None,
|
|
input_length: int = None,
|
|
layer_norm_type: str = "1",
|
|
):
|
|
super().__init__()
|
|
self.hidden_channels = hidden_channels
|
|
self.hidden_channels_ffn = hidden_channels_ffn
|
|
self.num_heads = num_heads
|
|
self.num_layers = num_layers
|
|
self.kernel_size = kernel_size
|
|
self.dropout_p = dropout_p
|
|
self.rel_attn_window_size = rel_attn_window_size
|
|
|
|
self.dropout = nn.Dropout(dropout_p)
|
|
self.attn_layers = nn.ModuleList()
|
|
self.norm_layers_1 = nn.ModuleList()
|
|
self.ffn_layers = nn.ModuleList()
|
|
self.norm_layers_2 = nn.ModuleList()
|
|
|
|
for idx in range(self.num_layers):
|
|
self.attn_layers.append(
|
|
RelativePositionMultiHeadAttention(
|
|
hidden_channels if idx != 0 else in_channels,
|
|
hidden_channels,
|
|
num_heads,
|
|
rel_attn_window_size=rel_attn_window_size,
|
|
dropout_p=dropout_p,
|
|
input_length=input_length,
|
|
)
|
|
)
|
|
if layer_norm_type == "1":
|
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
|
elif layer_norm_type == "2":
|
|
self.norm_layers_1.append(LayerNorm2(hidden_channels))
|
|
else:
|
|
raise ValueError(" [!] Unknown layer norm type")
|
|
|
|
if hidden_channels != out_channels and (idx + 1) == self.num_layers:
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
|
|
|
self.ffn_layers.append(
|
|
FeedForwardNetwork(
|
|
hidden_channels,
|
|
hidden_channels if (idx + 1) != self.num_layers else out_channels,
|
|
hidden_channels_ffn,
|
|
kernel_size,
|
|
dropout_p=dropout_p,
|
|
)
|
|
)
|
|
|
|
if layer_norm_type == "1":
|
|
self.norm_layers_2.append(LayerNorm(hidden_channels if (idx + 1) != self.num_layers else out_channels))
|
|
elif layer_norm_type == "2":
|
|
self.norm_layers_2.append(LayerNorm2(hidden_channels if (idx + 1) != self.num_layers else out_channels))
|
|
else:
|
|
raise ValueError(" [!] Unknown layer norm type")
|
|
|
|
def forward(self, x, x_mask):
|
|
"""
|
|
Shapes:
|
|
- x: :math:`[B, C, T]`
|
|
- x_mask: :math:`[B, 1, T]`
|
|
"""
|
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
|
for i in range(self.num_layers):
|
|
x = x * x_mask
|
|
y = self.attn_layers[i](x, x, attn_mask)
|
|
y = self.dropout(y)
|
|
x = self.norm_layers_1[i](x + y)
|
|
|
|
y = self.ffn_layers[i](x, x_mask)
|
|
y = self.dropout(y)
|
|
|
|
if (i + 1) == self.num_layers and hasattr(self, "proj"):
|
|
x = self.proj(x)
|
|
|
|
x = self.norm_layers_2[i](x + y)
|
|
x = x * x_mask
|
|
return x
|
|
|