|
from torch import nn
|
|
|
|
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
|
|
from TTS.tts.layers.generic.transformer import FFTransformerBlock
|
|
|
|
|
|
class DurationPredictor(nn.Module):
|
|
def __init__(self, num_chars, hidden_channels, hidden_channels_ffn, num_heads):
|
|
super().__init__()
|
|
self.embed = nn.Embedding(num_chars, hidden_channels)
|
|
self.pos_enc = PositionalEncoding(hidden_channels, dropout_p=0.1)
|
|
self.FFT = FFTransformerBlock(hidden_channels, num_heads, hidden_channels_ffn, 2, 0.1)
|
|
self.out_layer = nn.Conv1d(hidden_channels, 1, 1)
|
|
|
|
def forward(self, text, text_lengths):
|
|
|
|
emb = self.embed(text)
|
|
emb = self.pos_enc(emb.transpose(1, 2))
|
|
x = self.FFT(emb, text_lengths)
|
|
x = self.out_layer(x).squeeze(-1)
|
|
return x
|
|
|