File size: 9,123 Bytes
03b0bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f71191
 
 
 
 
03b0bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ed7d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from TTS.api import TTS
import numpy as np
import torch
import os
import gradio as gr
from scipy.io.wavfile import write as write_wav

# Check if GPU is available
if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

# Global variable to store the TTS model
global_tts = None
current_model_name = None

# Function to list available TTS models
def list_available_models():
    tts = TTS()
    model_manager = tts.list_models()
    return model_manager.list_models()

# Function to check if a model is multilingual
def is_multilingual(model_name):
    return "multilingual" in model_name.lower() or "xtts" in model_name.lower()

# Function to fetch available speakers from the model
def get_available_speakers(tts):
    try:
        # Check if the model has a speaker manager
        if hasattr(tts.synthesizer, 'speaker_manager') and tts.synthesizer.speaker_manager:
            return tts.synthesizer.speaker_manager.speaker_names
        else:
            print("Warning: No speaker manager found in the model. Using voice cloning only.")
            return None  # No pre-defined speakers
    except Exception as e:
        print(f"Error fetching speakers: {e}")
        return None  # Fallback to voice cloning

# Function to list .wav files in the /clone/ folder
def list_wav_files():
    clone_folder = "clone"
    if not os.path.exists(clone_folder):
        print(f"Error: Folder '{clone_folder}' not found.")
        return []

    wav_files = [f for f in os.listdir(clone_folder) if f.endswith(".wav")]
    if not wav_files:
        print(f"No .wav files found in '{clone_folder}'.")
        return []

    return wav_files

# Function to initialize or update the TTS model
def initialize_or_update_tts(model_name):
    global global_tts, current_model_name
    if global_tts is None or model_name != current_model_name:
        print(f"Loading model: {model_name}")
        global_tts = TTS(model_name=model_name, progress_bar=True)
        
        # Set the phonemizer to gruut (if the model supports it)
        if hasattr(global_tts.synthesizer, 'phonemizer'):
            global_tts.synthesizer.phonemizer = "gruut"
        
        global_tts.to(device)
        current_model_name = model_name
    return global_tts

# Function to generate TTS audio
def generate_tts_audio(text, model_name, voice_choice, speaker_name=None, wav_file_choice=None, uploaded_file=None, recorded_audio=None):
    global global_tts
    try:
        # Initialize or update the TTS model
        tts = initialize_or_update_tts(model_name)

        # Determine the reference audio file
        if voice_choice == "existing_speaker":
            if not speaker_name:
                return "Error: Speaker name is required for existing speaker.", None
            reference_audio = None
        elif voice_choice == "voice_cloning":
            if recorded_audio:
                # Use the recorded audio for voice cloning
                reference_audio = recorded_audio
            elif uploaded_file:
                # Use the uploaded file for voice cloning
                reference_audio = uploaded_file
            elif wav_file_choice:
                # Use a file from the clone folder
                wav_files = list_wav_files()
                if not wav_files:
                    return "Error: No .wav files found for voice cloning.", None

                try:
                    wav_file_index = int(wav_file_choice.split(":")[0].strip())
                    if wav_file_index < 0 or wav_file_index >= len(wav_files):
                        return "Error: Invalid .wav file index.", None
                    reference_audio = os.path.join("clone", wav_files[wav_file_index])
                except (ValueError, IndexError, AttributeError):
                    return "Error: Invalid .wav file choice.", None
            else:
                return "Error: No reference audio provided for voice cloning.", None
        else:
            return "Error: Invalid voice choice.", None

        # Generate TTS audio
        if reference_audio:
            # Use reference voice (voice cloning)
            if is_multilingual(model_name):
                audio = tts.tts(
                    text=text,
                    speaker_wav=reference_audio,
                    language="en"
                )
            else:
                audio = tts.tts(
                    text=text,
                    speaker_wav=reference_audio
                )
        else:
            # Use existing speaker
            if is_multilingual(model_name):
                audio = tts.tts(
                    text=text,
                    speaker=speaker_name,
                    language="en"
                )
            else:
                audio = tts.tts(
                    text=text,
                    speaker=speaker_name
                )

        # Convert audio to a NumPy array
        audio_np = np.array(audio, dtype=np.float32)

        # Save the audio as a .wav file
        output_file = "output.wav"
        write_wav(output_file, tts.synthesizer.output_sample_rate, audio_np)

        return "Audio generated successfully!", (tts.synthesizer.output_sample_rate, audio_np)
    except Exception as e:
        return f"Error generating audio: {e}", None

# Gradio interface
def create_gradio_interface():
    available_models = list_available_models()
    wav_files = list_wav_files()
    wav_file_choices = [f"{i}: {file}" for i, file in enumerate(wav_files)]

    with gr.Blocks() as demo:
        gr.Markdown("# TTS Streaming System")
        with gr.Row():
            text_input = gr.Textbox(label="Enter text to generate speech", lines=3)
        with gr.Row():
            model_name = gr.Dropdown(choices=available_models, label="Select TTS Model", value=available_models[0] if available_models else None)
        with gr.Row():
            voice_choice = gr.Radio(
                choices=["existing_speaker", "voice_cloning"],
                label="Select voice type",
                value="existing_speaker"
            )
        with gr.Row():
            speaker_name = gr.Dropdown(
                label="Select a speaker",
                visible=True
            )
            wav_file_choice = gr.Dropdown(
                choices=wav_file_choices,
                label="Select a .wav file for cloning",
                visible=False
            )
            uploaded_file = gr.Audio(
                label="Upload your own .wav file for cloning",
                type="filepath",
                visible=False
            )
            recorded_audio = gr.Microphone(
                label="Record your voice for cloning",
                type="filepath",
                visible=False
            )
        with gr.Row():
            submit_button = gr.Button("Generate Speech")
        with gr.Row():
            output_text = gr.Textbox(label="Output", interactive=False)
            output_audio = gr.Audio(label="Generated Audio", type="numpy", visible=True)

        def update_components(choice, model_name):
            tts = initialize_or_update_tts(model_name)
            available_speakers = get_available_speakers(tts)

            if choice == "existing_speaker":
                return (
                    gr.update(visible=True, choices=available_speakers if available_speakers else []),  # speaker_name
                    gr.update(visible=False),  # wav_file_choice
                    gr.update(visible=False),  # uploaded_file
                    gr.update(visible=False)   # recorded_audio
                )
            elif choice == "voice_cloning":
                return (
                    gr.update(visible=False),  # speaker_name
                    gr.update(visible=bool(wav_files)),  # wav_file_choice
                    gr.update(visible=True),  # uploaded_file
                    gr.update(visible=True)   # recorded_audio
                )
            else:
                return (
                    gr.update(visible=False),  # speaker_name
                    gr.update(visible=False),  # wav_file_choice
                    gr.update(visible=False),  # uploaded_file
                    gr.update(visible=False)   # recorded_audio
                )

        voice_choice.change(update_components, inputs=[voice_choice, model_name], outputs=[speaker_name, wav_file_choice, uploaded_file, recorded_audio])
        model_name.change(update_components, inputs=[voice_choice, model_name], outputs=[speaker_name, wav_file_choice, uploaded_file, recorded_audio])

        # Enable concurrency for the submit button
        submit_button.click(
            generate_tts_audio,
            inputs=[text_input, model_name, voice_choice, speaker_name, wav_file_choice, uploaded_file, recorded_audio],
            outputs=[output_text, output_audio],
            concurrency_limit=10  # Adjust this value based on your system's capabilities
        )

    return demo

# Launch Gradio interface
if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.launch(share=True)  # Set share=True to create a public link