Spaces:
Sleeping
Sleeping
File size: 12,708 Bytes
905e42f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import os
from datetime import datetime
from typing import Optional, Tuple
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms, models, datasets
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, TQDMProgressBar
from loguru import logger
class CustomProgressBar(TQDMProgressBar):
def __init__(self):
super().__init__()
self.enable = True
def on_train_epoch_start(self, trainer, pl_module):
super().on_train_epoch_start(trainer, pl_module)
logger.info(f"\n{'='*20} Epoch {trainer.current_epoch} {'='*20}")
class ImageNetModule(LightningModule):
def __init__(
self,
learning_rate: float = 0.1,
momentum: float = 0.9,
weight_decay: float = 1e-4,
batch_size: int = 256,
num_workers: int = 16,
max_epochs: int = 90,
train_path: str = "path/to/imagenet",
val_path: str = "path/to/imagenet",
checkpoint_dir: str = "checkpoints"
):
super().__init__()
# self.save_hyperparameters()
# Model
self.model = models.resnet50(weights=None)
# Training parameters
self.learning_rate = learning_rate
self.momentum = momentum
self.weight_decay = weight_decay
self.batch_size = batch_size
self.num_workers = num_workers
self.max_epochs = max_epochs
self.train_path = train_path
self.val_path = val_path
self.checkpoint_dir = checkpoint_dir
# Metrics tracking
self.training_step_outputs = []
self.validation_step_outputs = []
self.best_val_acc = 0.0
# Set up transforms
self.train_transforms = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
self.val_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
images, labels = batch
outputs = self(images)
loss = F.cross_entropy(outputs, labels)
# Calculate accuracy
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels).sum().item()
accuracy = (correct / labels.size(0))*100
# Log metrics for this step
self.log('train_loss', loss, on_step=False, on_epoch=True, prog_bar=True)
self.log('train_acc', accuracy, on_step=False, on_epoch=True, prog_bar=True)
self.training_step_outputs.append({
'loss': loss.detach(),
'acc': torch.tensor(accuracy)
})
return loss
def on_train_epoch_end(self):
if not self.training_step_outputs:
print("Warning: No training outputs available for this epoch")
return
avg_loss = torch.stack([x['loss'] for x in self.training_step_outputs]).mean()
avg_acc = torch.stack([x['acc'] for x in self.training_step_outputs]).mean()
# Get current learning rate
current_lr = self.optimizers().param_groups[0]['lr']
logger.info(f"Training metrics - Loss: {avg_loss:.4f}, Accuracy: {avg_acc:.4f}, LR: {current_lr:.6f}")
self.training_step_outputs.clear()
def validation_step(self, batch, batch_idx):
images, labels = batch
outputs = self(images)
loss = F.cross_entropy(outputs, labels)
# Calculate accuracy
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels).sum().item()
accuracy = (correct / labels.size(0))*100
# Log metrics for this step
self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True)
self.log('val_acc', accuracy, on_step=False, on_epoch=True, prog_bar=True)
self.validation_step_outputs.append({
'val_loss': loss.detach(),
'val_acc': torch.tensor(accuracy)
})
return {'val_loss': loss, 'val_acc': accuracy}
def on_validation_epoch_end(self):
avg_loss = torch.stack([x['val_loss'] for x in self.validation_step_outputs]).mean()
avg_acc = torch.stack([x['val_acc'] for x in self.validation_step_outputs]).mean()
# Log final validation metrics
self.log('val_loss_epoch', avg_loss)
self.log('val_acc_epoch', avg_acc)
# Save checkpoint if validation accuracy improves
if avg_acc > self.best_val_acc:
self.best_val_acc = avg_acc
checkpoint_path = os.path.join(
self.checkpoint_dir,
f"resnet50-epoch{self.current_epoch:02d}-acc{avg_acc:.4f}.ckpt"
)
self.trainer.save_checkpoint(checkpoint_path)
logger.info(f"New best validation accuracy: {avg_acc:.4f}. Saved checkpoint to {checkpoint_path}")
logger.info(f"Validation metrics - Loss: {avg_loss:.4f}, Accuracy: {avg_acc:.4f}")
self.validation_step_outputs.clear()
def train_dataloader(self):
train_dataset = datasets.ImageFolder(
self.train_path,
transform=self.train_transforms
)
return DataLoader(
train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
pin_memory=True
)
def val_dataloader(self):
val_dataset = datasets.ImageFolder(
self.val_path,
transform=self.val_transforms
)
return DataLoader(
val_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
pin_memory=True
)
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.learning_rate,
momentum=self.momentum,
weight_decay=self.weight_decay
)
# OneCycleLR scheduler
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=self.learning_rate,
epochs=self.max_epochs,
steps_per_epoch=len(self.train_dataloader()),
pct_start=0.3,
anneal_strategy='cos',
div_factor=25.0,
cycle_momentum=True,
base_momentum=0.85,
max_momentum=0.95,
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "step"
}
}
def setup_logging(log_dir="logs"):
os.makedirs(log_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
log_file = os.path.join(log_dir, f"training_{timestamp}.log")
logger.remove()
logger.add(
lambda msg: print(msg),
format="<green>{time:YYYY-MM-DD HH:mm:ss}</green> | {message}",
colorize=True,
level="INFO"
)
logger.add(
log_file,
format="{time:YYYY-MM-DD HH:mm:ss} | {level} | {message}",
level="INFO",
rotation="100 MB",
retention="30 days"
)
logger.info(f"Logging setup complete. Logs will be saved to: {log_file}")
return log_file
def find_latest_checkpoint(checkpoint_dir: str) -> Optional[str]:
"""Find the latest checkpoint file using various possible naming patterns."""
# Look for checkpoint files with different possible patterns
patterns = [
"*.ckpt", # Generic checkpoint files
"resnet50-epoch*.ckpt", # Our custom format
"*epoch=*.ckpt", # PyTorch Lightning default format
"checkpoint_epoch*.ckpt" # Another common format
]
all_checkpoints = []
for pattern in patterns:
checkpoint_pattern = os.path.join(checkpoint_dir, pattern)
all_checkpoints.extend(glob.glob(checkpoint_pattern))
if not all_checkpoints:
logger.info("No existing checkpoints found.")
return None
def extract_info(checkpoint_path: str) -> Tuple[int, float]:
"""Extract epoch and optional accuracy from checkpoint filename."""
filename = os.path.basename(checkpoint_path)
# Try different patterns to extract epoch number
epoch_patterns = [
r'epoch=(\d+)', # matches epoch=X
r'epoch(\d+)', # matches epochX
r'epoch[_-](\d+)', # matches epoch_X or epoch-X
]
epoch = None
for pattern in epoch_patterns:
match = re.search(pattern, filename)
if match:
epoch = int(match.group(1))
break
# If no epoch found, try to get from file modification time
if epoch is None:
epoch = int(os.path.getmtime(checkpoint_path))
# Try to extract accuracy if present
acc_match = re.search(r'acc[_-]?([\d.]+)', filename)
acc = float(acc_match.group(1)) if acc_match else 0.0
return epoch, acc
try:
latest_checkpoint = max(all_checkpoints, key=lambda x: extract_info(x)[0])
epoch, acc = extract_info(latest_checkpoint)
logger.info(f"Found latest checkpoint: {latest_checkpoint}")
logger.info(f"Epoch: {epoch}" + (f", Accuracy: {acc:.4f}" if acc > 0 else ""))
return latest_checkpoint
except Exception as e:
logger.error(f"Error processing checkpoints: {str(e)}")
# If there's any error in parsing, return the most recently modified file
latest_checkpoint = max(all_checkpoints, key=os.path.getmtime)
logger.info(f"Falling back to most recently modified checkpoint: {latest_checkpoint}")
return latest_checkpoint
def main():
checkpoint_dir = "/home/ec2-user/ebs/volumes/era_session9"
log_file = setup_logging(log_dir=checkpoint_dir)
logger.info("Starting training with configuration:")
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"CUDA device count: {torch.cuda.device_count()}")
logger.info(f"CUDA devices: {[torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())]}")
# Find latest checkpoint
# latest_checkpoint = find_latest_checkpoint(checkpoint_dir)
latest_checkpoint = "/home/ec2-user/ebs/volumes/era_session9/resnet50-epoch18-acc53.7369.ckpt"
model = ImageNetModule(
learning_rate=0.156,
batch_size=256,
num_workers=16,
max_epochs=60,
train_path="/home/ec2-user/ebs/volumes/imagenet/ILSVRC/Data/CLS-LOC/train",
val_path="/home/ec2-user/ebs/volumes/imagenet/imagenet_validation",
checkpoint_dir=checkpoint_dir
)
logger.info(f"Model configuration:")
logger.info(f"Learning rate: {model.learning_rate}")
logger.info(f"Batch size: {model.batch_size}")
logger.info(f"Number of workers: {model.num_workers}")
logger.info(f"Max epochs: {model.max_epochs}")
progress_bar = CustomProgressBar()
trainer = Trainer(
max_epochs=60,
accelerator="gpu",
devices=4,
strategy="ddp",
precision=16,
callbacks=[progress_bar],
enable_progress_bar=True,
)
logger.info("Starting training")
try:
if latest_checkpoint:
logger.info(f"Resuming training from checkpoint: {latest_checkpoint}")
trainer.fit(model, ckpt_path=latest_checkpoint)
else:
logger.info("Starting training from scratch")
trainer.fit(model)
logger.info("Training completed successfully")
except Exception as e:
logger.error(f"Training failed with error: {str(e)}")
raise
finally:
logger.info(f"Training session ended. Log file: {log_file}")
if __name__ == "__main__":
main()
# pass |