File size: 12,708 Bytes
905e42f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
from datetime import datetime
from typing import Optional, Tuple
import glob

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms, models, datasets
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, TQDMProgressBar
from loguru import logger

class CustomProgressBar(TQDMProgressBar):
    def __init__(self):
        super().__init__()
        self.enable = True

    def on_train_epoch_start(self, trainer, pl_module):
        super().on_train_epoch_start(trainer, pl_module)
        logger.info(f"\n{'='*20} Epoch {trainer.current_epoch} {'='*20}")

class ImageNetModule(LightningModule):
    def __init__(
        self,
        learning_rate: float = 0.1,
        momentum: float = 0.9,
        weight_decay: float = 1e-4,
        batch_size: int = 256,
        num_workers: int = 16,
        max_epochs: int = 90,
        train_path: str = "path/to/imagenet",
        val_path: str = "path/to/imagenet",
        checkpoint_dir: str = "checkpoints"
    ):
        super().__init__()
        # self.save_hyperparameters()
        
        # Model
        self.model = models.resnet50(weights=None)
        
        # Training parameters
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.weight_decay = weight_decay
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.max_epochs = max_epochs
        self.train_path = train_path
        self.val_path = val_path
        self.checkpoint_dir = checkpoint_dir
        
        # Metrics tracking
        self.training_step_outputs = []
        self.validation_step_outputs = []
        self.best_val_acc = 0.0
        
        # Set up transforms
        self.train_transforms = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                              std=[0.229, 0.224, 0.225])
        ])
        
        self.val_transforms = transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                              std=[0.229, 0.224, 0.225])
        ])

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        images, labels = batch
        outputs = self(images)
        loss = F.cross_entropy(outputs, labels)
        
        # Calculate accuracy
        _, predicted = torch.max(outputs.data, 1)
        correct = (predicted == labels).sum().item()
        accuracy = (correct / labels.size(0))*100
        
        # Log metrics for this step
        self.log('train_loss', loss, on_step=False, on_epoch=True, prog_bar=True)
        self.log('train_acc', accuracy, on_step=False, on_epoch=True, prog_bar=True)
        
        self.training_step_outputs.append({
            'loss': loss.detach(),
            'acc': torch.tensor(accuracy)
        })
        
        return loss

    def on_train_epoch_end(self):
        if not self.training_step_outputs:
            print("Warning: No training outputs available for this epoch")
            return
        avg_loss = torch.stack([x['loss'] for x in self.training_step_outputs]).mean()
        avg_acc = torch.stack([x['acc'] for x in self.training_step_outputs]).mean()
        
        # Get current learning rate
        current_lr = self.optimizers().param_groups[0]['lr']
        
        logger.info(f"Training metrics - Loss: {avg_loss:.4f}, Accuracy: {avg_acc:.4f}, LR: {current_lr:.6f}")
        
        self.training_step_outputs.clear()

    def validation_step(self, batch, batch_idx):
        images, labels = batch
        outputs = self(images)
        loss = F.cross_entropy(outputs, labels)
        
        # Calculate accuracy
        _, predicted = torch.max(outputs.data, 1)
        correct = (predicted == labels).sum().item()
        accuracy = (correct / labels.size(0))*100
        
        # Log metrics for this step
        self.log('val_loss', loss, on_step=False, on_epoch=True, prog_bar=True)
        self.log('val_acc', accuracy, on_step=False, on_epoch=True, prog_bar=True)
        
        self.validation_step_outputs.append({
            'val_loss': loss.detach(),
            'val_acc': torch.tensor(accuracy)
        })
        
        return {'val_loss': loss, 'val_acc': accuracy}

    def on_validation_epoch_end(self):
        avg_loss = torch.stack([x['val_loss'] for x in self.validation_step_outputs]).mean()
        avg_acc = torch.stack([x['val_acc'] for x in self.validation_step_outputs]).mean()
        
        # Log final validation metrics
        self.log('val_loss_epoch', avg_loss)
        self.log('val_acc_epoch', avg_acc)
        
        # Save checkpoint if validation accuracy improves
        if avg_acc > self.best_val_acc:
            self.best_val_acc = avg_acc
            checkpoint_path = os.path.join(
                self.checkpoint_dir,
                f"resnet50-epoch{self.current_epoch:02d}-acc{avg_acc:.4f}.ckpt"
            )
            self.trainer.save_checkpoint(checkpoint_path)
            logger.info(f"New best validation accuracy: {avg_acc:.4f}. Saved checkpoint to {checkpoint_path}")
        
        logger.info(f"Validation metrics - Loss: {avg_loss:.4f}, Accuracy: {avg_acc:.4f}")
        
        self.validation_step_outputs.clear()

    def train_dataloader(self):
        train_dataset = datasets.ImageFolder(
            self.train_path,
            transform=self.train_transforms
        )
        return DataLoader(
            train_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=self.num_workers,
            pin_memory=True
        )

    def val_dataloader(self):
        val_dataset = datasets.ImageFolder(
            self.val_path,
            transform=self.val_transforms
        )
        return DataLoader(
            val_dataset,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=self.num_workers,
            pin_memory=True
        )

    def configure_optimizers(self):
        optimizer = torch.optim.SGD(
            self.parameters(),
            lr=self.learning_rate,
            momentum=self.momentum,
            weight_decay=self.weight_decay
        )
        
        # OneCycleLR scheduler
        scheduler = torch.optim.lr_scheduler.OneCycleLR(
            optimizer,
            max_lr=self.learning_rate,
            epochs=self.max_epochs,
            steps_per_epoch=len(self.train_dataloader()),
            pct_start=0.3,
            anneal_strategy='cos',
            div_factor=25.0,
            cycle_momentum=True,
            base_momentum=0.85,
            max_momentum=0.95,
        )
        
        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": scheduler,
                "interval": "step"
            }
        }

def setup_logging(log_dir="logs"):
    os.makedirs(log_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    log_file = os.path.join(log_dir, f"training_{timestamp}.log")
    
    logger.remove()
    logger.add(
        lambda msg: print(msg),
        format="<green>{time:YYYY-MM-DD HH:mm:ss}</green> | {message}",
        colorize=True,
        level="INFO"
    )
    
    logger.add(
        log_file,
        format="{time:YYYY-MM-DD HH:mm:ss} | {level} | {message}",
        level="INFO",
        rotation="100 MB",
        retention="30 days"
    )
    
    logger.info(f"Logging setup complete. Logs will be saved to: {log_file}")
    return log_file

def find_latest_checkpoint(checkpoint_dir: str) -> Optional[str]:
    """Find the latest checkpoint file using various possible naming patterns."""
    # Look for checkpoint files with different possible patterns
    patterns = [
        "*.ckpt",  # Generic checkpoint files
        "resnet50-epoch*.ckpt",  # Our custom format
        "*epoch=*.ckpt",  # PyTorch Lightning default format
        "checkpoint_epoch*.ckpt"  # Another common format
    ]
    
    all_checkpoints = []
    for pattern in patterns:
        checkpoint_pattern = os.path.join(checkpoint_dir, pattern)
        all_checkpoints.extend(glob.glob(checkpoint_pattern))
    
    if not all_checkpoints:
        logger.info("No existing checkpoints found.")
        return None
    
    def extract_info(checkpoint_path: str) -> Tuple[int, float]:
        """Extract epoch and optional accuracy from checkpoint filename."""
        filename = os.path.basename(checkpoint_path)
        
        # Try different patterns to extract epoch number
        epoch_patterns = [
            r'epoch=(\d+)',  # matches epoch=X
            r'epoch(\d+)',   # matches epochX
            r'epoch[_-](\d+)',  # matches epoch_X or epoch-X
        ]
        
        epoch = None
        for pattern in epoch_patterns:
            match = re.search(pattern, filename)
            if match:
                epoch = int(match.group(1))
                break
        
        # If no epoch found, try to get from file modification time
        if epoch is None:
            epoch = int(os.path.getmtime(checkpoint_path))
        
        # Try to extract accuracy if present
        acc_match = re.search(r'acc[_-]?([\d.]+)', filename)
        acc = float(acc_match.group(1)) if acc_match else 0.0
        
        return epoch, acc
    
    try:
        latest_checkpoint = max(all_checkpoints, key=lambda x: extract_info(x)[0])
        epoch, acc = extract_info(latest_checkpoint)
        logger.info(f"Found latest checkpoint: {latest_checkpoint}")
        logger.info(f"Epoch: {epoch}" + (f", Accuracy: {acc:.4f}" if acc > 0 else ""))
        return latest_checkpoint
    except Exception as e:
        logger.error(f"Error processing checkpoints: {str(e)}")
        # If there's any error in parsing, return the most recently modified file
        latest_checkpoint = max(all_checkpoints, key=os.path.getmtime)
        logger.info(f"Falling back to most recently modified checkpoint: {latest_checkpoint}")
        return latest_checkpoint


def main():
    checkpoint_dir = "/home/ec2-user/ebs/volumes/era_session9"
    log_file = setup_logging(log_dir=checkpoint_dir)
    
    logger.info("Starting training with configuration:")
    logger.info(f"PyTorch version: {torch.__version__}")
    logger.info(f"CUDA available: {torch.cuda.is_available()}")
    if torch.cuda.is_available():
        logger.info(f"CUDA device count: {torch.cuda.device_count()}")
        logger.info(f"CUDA devices: {[torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())]}")
    
    # Find latest checkpoint
    # latest_checkpoint = find_latest_checkpoint(checkpoint_dir)
    latest_checkpoint = "/home/ec2-user/ebs/volumes/era_session9/resnet50-epoch18-acc53.7369.ckpt"
    
    model = ImageNetModule(
        learning_rate=0.156,
        batch_size=256,
        num_workers=16,
        max_epochs=60,
        train_path="/home/ec2-user/ebs/volumes/imagenet/ILSVRC/Data/CLS-LOC/train",
        val_path="/home/ec2-user/ebs/volumes/imagenet/imagenet_validation",
        checkpoint_dir=checkpoint_dir
    )
    
    logger.info(f"Model configuration:")
    logger.info(f"Learning rate: {model.learning_rate}")
    logger.info(f"Batch size: {model.batch_size}")
    logger.info(f"Number of workers: {model.num_workers}")
    logger.info(f"Max epochs: {model.max_epochs}")
    
    progress_bar = CustomProgressBar()
    
    trainer = Trainer(
        max_epochs=60,
        accelerator="gpu",
        devices=4,
        strategy="ddp",
        precision=16,
        callbacks=[progress_bar],
        enable_progress_bar=True,
    )
    
    logger.info("Starting training")
    
    try:
        if latest_checkpoint:
            logger.info(f"Resuming training from checkpoint: {latest_checkpoint}")
            trainer.fit(model, ckpt_path=latest_checkpoint)
        else:
            logger.info("Starting training from scratch")
            trainer.fit(model)
            
        logger.info("Training completed successfully")
    except Exception as e:
        logger.error(f"Training failed with error: {str(e)}")
        raise
    finally:
        logger.info(f"Training session ended. Log file: {log_file}")

if __name__ == "__main__":
    main()
    # pass