Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,8 +5,11 @@ from langchain_core.documents import Document
|
|
| 5 |
from langchain_community.vectorstores import FAISS
|
| 6 |
from langchain_openai import OpenAIEmbeddings
|
| 7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
| 8 |
import re
|
| 9 |
import os
|
|
|
|
| 10 |
from typing import Dict, List, Any
|
| 11 |
import warnings
|
| 12 |
import gradio as gr
|
|
@@ -19,11 +22,12 @@ load_dotenv()
|
|
| 19 |
|
| 20 |
class ExcelAIQuerySystem:
|
| 21 |
"""
|
| 22 |
-
|
|
|
|
| 23 |
"""
|
| 24 |
def __init__(self, openai_api_key: str):
|
| 25 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
| 26 |
-
self.llm = OpenAI(temperature=0)
|
| 27 |
self.embeddings = OpenAIEmbeddings()
|
| 28 |
self.excel_data = {}
|
| 29 |
self.sheet_descriptions = {}
|
|
@@ -43,7 +47,6 @@ class ExcelAIQuerySystem:
|
|
| 43 |
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
| 44 |
df = self._clean_dataframe(df)
|
| 45 |
self.excel_data[sheet_name] = df
|
| 46 |
-
|
| 47 |
description = self._generate_sheet_description(sheet_name, df)
|
| 48 |
self.sheet_descriptions[sheet_name] = description
|
| 49 |
self.logs.append(f" - Loaded and described sheet '{sheet_name}' ({df.shape[0]} rows × {df.shape[1]} columns)")
|
|
@@ -58,31 +61,28 @@ class ExcelAIQuerySystem:
|
|
| 58 |
raise Exception(f"Error loading Excel file: {str(e)}")
|
| 59 |
|
| 60 |
def _clean_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 61 |
-
"""Cleans a DataFrame by removing empty rows/columns and converting
|
| 62 |
df = df.dropna(how='all').dropna(axis=1, how='all').reset_index(drop=True)
|
|
|
|
| 63 |
for col in df.columns:
|
| 64 |
if df[col].dtype == 'object':
|
| 65 |
-
try:
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
try:
|
| 70 |
-
df[col] = pd.to_numeric(df[col], errors='ignore')
|
| 71 |
-
except:
|
| 72 |
-
pass
|
| 73 |
return df
|
| 74 |
|
| 75 |
def _generate_sheet_description(self, sheet_name: str, df: pd.DataFrame) -> str:
|
| 76 |
-
"""Generates a
|
| 77 |
-
|
|
|
|
| 78 |
prompt = f"""
|
| 79 |
-
Analyze this Excel sheet
|
| 80 |
Sheet Name: {sheet_name}
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
{
|
| 84 |
-
|
| 85 |
-
Focus on the main purpose of the data, key metrics, and the time period covered.
|
| 86 |
"""
|
| 87 |
try:
|
| 88 |
return self.llm.invoke(prompt)
|
|
@@ -91,100 +91,75 @@ class ExcelAIQuerySystem:
|
|
| 91 |
|
| 92 |
def _create_vectorstore(self):
|
| 93 |
"""Creates a FAISS vector store from sheet descriptions for similarity search."""
|
| 94 |
-
documents = [
|
| 95 |
-
Document(page_content=desc, metadata={"sheet_name": name})
|
| 96 |
-
for name, desc in self.sheet_descriptions.items()
|
| 97 |
-
]
|
| 98 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 99 |
splits = text_splitter.split_documents(documents)
|
| 100 |
self.vectorstore = FAISS.from_documents(splits, self.embeddings)
|
| 101 |
|
| 102 |
def identify_relevant_sheets(self, query: str) -> List[str]:
|
| 103 |
"""Identifies the most relevant sheets for a given query using the vector store."""
|
| 104 |
-
if not self.vectorstore:
|
| 105 |
-
return list(self.excel_data.keys())
|
| 106 |
try:
|
| 107 |
-
docs = self.vectorstore.similarity_search(query, k=
|
| 108 |
sheet_names = [doc.metadata['sheet_name'] for doc in docs if 'sheet_name' in doc.metadata]
|
| 109 |
-
return list(dict.fromkeys(sheet_names))
|
| 110 |
except Exception:
|
| 111 |
return list(self.excel_data.keys())
|
| 112 |
|
| 113 |
-
def query_data(self, query: str) -> Dict[str, Any]:
|
| 114 |
-
"""Processes a
|
| 115 |
-
results = {'query': query, 'relevant_sheets': [], 'sheet_results': {}, 'summary': ''
|
|
|
|
| 116 |
try:
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
results['relevant_sheets'] = relevant_sheets
|
| 119 |
|
| 120 |
for sheet_name in relevant_sheets:
|
| 121 |
-
if sheet_name not in self.excel_data:
|
| 122 |
-
continue
|
| 123 |
-
df = self.excel_data[sheet_name]
|
| 124 |
-
analysis_prompt = f"""
|
| 125 |
-
Analyze the data from sheet '{sheet_name}' to answer the query: "{query}"
|
| 126 |
-
Columns: {list(df.columns)}
|
| 127 |
-
Sample Data:
|
| 128 |
-
{df.head(5).to_string()}
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
response =
|
| 133 |
-
results['sheet_results'][sheet_name] = {'response': response}
|
| 134 |
|
| 135 |
results['summary'] = self._generate_summary(query, results['sheet_results'])
|
| 136 |
-
results['insights'] = self._extract_insights(results['sheet_results'])
|
| 137 |
return results
|
| 138 |
except Exception as e:
|
| 139 |
-
results['summary'] = f"
|
| 140 |
return results
|
| 141 |
|
| 142 |
def _generate_summary(self, query: str, sheet_results: Dict) -> str:
|
| 143 |
"""Generates a final, consolidated summary from individual sheet analyses."""
|
| 144 |
-
if not sheet_results:
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
combined_responses = "\n\n".join(
|
| 148 |
-
f"--- Analysis from Sheet '{name}' ---\n{res['response']}"
|
| 149 |
-
for name, res in sheet_results.items()
|
| 150 |
-
)
|
| 151 |
-
prompt = f"""
|
| 152 |
-
Based on the following analyses, provide a final, consolidated answer to the query.
|
| 153 |
-
Original Query: {query}
|
| 154 |
-
|
| 155 |
-
{combined_responses}
|
| 156 |
-
|
| 157 |
-
Synthesize these findings into a clear and direct summary.
|
| 158 |
-
"""
|
| 159 |
-
return self.llm.invoke(prompt)
|
| 160 |
|
| 161 |
-
|
| 162 |
-
"
|
| 163 |
-
|
| 164 |
-
for sheet_name, result in sheet_results.items():
|
| 165 |
-
response = result.get('response', '').lower()
|
| 166 |
-
if re.search(r'\b\d+\.?\d*\b', response):
|
| 167 |
-
insights.add(f"Numerical data found in '{sheet_name}'")
|
| 168 |
-
trend_keywords = ['increase', 'decrease', 'growth', 'decline', 'trend', 'pattern']
|
| 169 |
-
if any(keyword in response for keyword in trend_keywords):
|
| 170 |
-
insights.add(f"Trend analysis available in '{sheet_name}'")
|
| 171 |
-
return list(insights)
|
| 172 |
|
| 173 |
# --- Gradio Interface ---
|
| 174 |
|
| 175 |
def process_file(api_key, file_obj):
|
| 176 |
-
"""
|
| 177 |
-
if not api_key:
|
| 178 |
-
|
| 179 |
-
if file_obj is None:
|
| 180 |
-
raise gr.Error("Please upload an Excel file.")
|
| 181 |
try:
|
| 182 |
excel_system = ExcelAIQuerySystem(api_key)
|
| 183 |
loading_logs = excel_system.load_excel_file(file_obj.name)
|
|
|
|
| 184 |
|
| 185 |
return (
|
| 186 |
loading_logs,
|
| 187 |
excel_system,
|
|
|
|
| 188 |
gr.update(visible=True),
|
| 189 |
gr.update(visible=True),
|
| 190 |
gr.update(visible=True)
|
|
@@ -192,55 +167,44 @@ def process_file(api_key, file_obj):
|
|
| 192 |
except Exception as e:
|
| 193 |
raise gr.Error(f"Failed to process file: {e}")
|
| 194 |
|
| 195 |
-
def generate_response(query, system_state):
|
| 196 |
-
"""
|
| 197 |
-
if not query:
|
| 198 |
-
|
| 199 |
-
if system_state is None:
|
| 200 |
-
raise gr.Error("File not loaded. Please upload and load a file first.")
|
| 201 |
|
| 202 |
try:
|
| 203 |
-
result = system_state.query_data(query)
|
| 204 |
summary = result.get('summary', 'No summary available.')
|
| 205 |
sheets = ", ".join(result.get('relevant_sheets', []))
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
details = f"**🔍 Relevant Sheets Identified:**\n{sheets}\n\n"
|
| 209 |
-
if insights:
|
| 210 |
-
details += f"**💡 Key Insights:**\n{insights}"
|
| 211 |
-
|
| 212 |
return summary, details
|
| 213 |
except Exception as e:
|
| 214 |
raise gr.Error(f"Error during query: {e}")
|
| 215 |
|
| 216 |
-
# --- UI Layout ---
|
| 217 |
-
|
| 218 |
with gr.Blocks(theme=gr.themes.Soft(), title="Excel AI Query System") as demo:
|
| 219 |
system_state = gr.State(None)
|
| 220 |
|
| 221 |
gr.Markdown("# 📊 Excel AI Query System")
|
| 222 |
-
gr.Markdown("Upload an Excel file, and ask questions about your data
|
| 223 |
|
| 224 |
with gr.Row():
|
| 225 |
with gr.Column(scale=1):
|
| 226 |
gr.Markdown("### 1. Setup")
|
| 227 |
-
api_key_input = gr.Textbox(
|
| 228 |
-
label="OpenAI API Key",
|
| 229 |
-
type="password",
|
| 230 |
-
placeholder="Enter your OpenAI API key...",
|
| 231 |
-
value=os.getenv("OPENAI_API_KEY", "")
|
| 232 |
-
)
|
| 233 |
file_input = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"])
|
| 234 |
load_button = gr.Button("Load File", variant="primary")
|
| 235 |
-
status_output = gr.Textbox(label="Loading Status", interactive=False, lines=
|
| 236 |
|
| 237 |
with gr.Column(scale=2):
|
| 238 |
gr.Markdown("### 2. Ask a Question")
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
| 243 |
)
|
|
|
|
| 244 |
ask_button = gr.Button("Get Answer", variant="primary", visible=False)
|
| 245 |
|
| 246 |
results_accordion = gr.Accordion("Results", open=False, visible=False)
|
|
@@ -248,21 +212,20 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Excel AI Query System") as demo:
|
|
| 248 |
summary_output = gr.Markdown(label="Summary")
|
| 249 |
details_output = gr.Markdown(label="Details")
|
| 250 |
|
| 251 |
-
# --- Event Handlers ---
|
| 252 |
-
|
| 253 |
load_button.click(
|
| 254 |
fn=process_file,
|
| 255 |
inputs=[api_key_input, file_input],
|
| 256 |
-
outputs=[status_output, system_state, query_input, ask_button, results_accordion]
|
| 257 |
)
|
| 258 |
|
| 259 |
ask_button.click(
|
| 260 |
fn=generate_response,
|
| 261 |
-
inputs=[query_input, system_state],
|
| 262 |
outputs=[summary_output, details_output]
|
| 263 |
).then(
|
| 264 |
lambda: gr.update(open=True),
|
| 265 |
outputs=results_accordion
|
| 266 |
)
|
|
|
|
| 267 |
if __name__ == "__main__":
|
| 268 |
demo.launch()
|
|
|
|
| 5 |
from langchain_community.vectorstores import FAISS
|
| 6 |
from langchain_openai import OpenAIEmbeddings
|
| 7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 8 |
+
from langchain.agents.agent_types import AgentType
|
| 9 |
+
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
|
| 10 |
import re
|
| 11 |
import os
|
| 12 |
+
import io
|
| 13 |
from typing import Dict, List, Any
|
| 14 |
import warnings
|
| 15 |
import gradio as gr
|
|
|
|
| 22 |
|
| 23 |
class ExcelAIQuerySystem:
|
| 24 |
"""
|
| 25 |
+
An improved system to query Excel files using a Pandas Agent for higher accuracy,
|
| 26 |
+
with an option to target a specific sheet.
|
| 27 |
"""
|
| 28 |
def __init__(self, openai_api_key: str):
|
| 29 |
os.environ["OPENAI_API_KEY"] = openai_api_key
|
| 30 |
+
self.llm = OpenAI(temperature=0)
|
| 31 |
self.embeddings = OpenAIEmbeddings()
|
| 32 |
self.excel_data = {}
|
| 33 |
self.sheet_descriptions = {}
|
|
|
|
| 47 |
df = pd.read_excel(file_path, sheet_name=sheet_name)
|
| 48 |
df = self._clean_dataframe(df)
|
| 49 |
self.excel_data[sheet_name] = df
|
|
|
|
| 50 |
description = self._generate_sheet_description(sheet_name, df)
|
| 51 |
self.sheet_descriptions[sheet_name] = description
|
| 52 |
self.logs.append(f" - Loaded and described sheet '{sheet_name}' ({df.shape[0]} rows × {df.shape[1]} columns)")
|
|
|
|
| 61 |
raise Exception(f"Error loading Excel file: {str(e)}")
|
| 62 |
|
| 63 |
def _clean_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 64 |
+
"""Cleans a DataFrame by removing empty rows/columns, standardizing headers, and converting types."""
|
| 65 |
df = df.dropna(how='all').dropna(axis=1, how='all').reset_index(drop=True)
|
| 66 |
+
df.columns = df.columns.str.strip().str.replace(r'[^a-zA-Z0-9_]', '_', regex=True)
|
| 67 |
for col in df.columns:
|
| 68 |
if df[col].dtype == 'object':
|
| 69 |
+
try: df[col] = pd.to_datetime(df[col], errors='ignore')
|
| 70 |
+
except: pass
|
| 71 |
+
try: df[col] = pd.to_numeric(df[col], errors='ignore')
|
| 72 |
+
except: pass
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
return df
|
| 74 |
|
| 75 |
def _generate_sheet_description(self, sheet_name: str, df: pd.DataFrame) -> str:
|
| 76 |
+
"""Generates a richer, more detailed description of a DataFrame for better retrieval."""
|
| 77 |
+
buffer = io.StringIO()
|
| 78 |
+
df.info(buf=buffer)
|
| 79 |
prompt = f"""
|
| 80 |
+
Analyze the metadata of this Excel sheet to provide a concise, one-paragraph summary.
|
| 81 |
Sheet Name: {sheet_name}
|
| 82 |
+
Dataframe Info: {buffer.getvalue()}
|
| 83 |
+
First 3 Rows: {df.head(3).to_string()}
|
| 84 |
+
Summary Stats: {df.describe().to_string()}
|
| 85 |
+
Based on all the metadata, summarize the sheet's main purpose and the types of data it contains.
|
|
|
|
| 86 |
"""
|
| 87 |
try:
|
| 88 |
return self.llm.invoke(prompt)
|
|
|
|
| 91 |
|
| 92 |
def _create_vectorstore(self):
|
| 93 |
"""Creates a FAISS vector store from sheet descriptions for similarity search."""
|
| 94 |
+
documents = [Document(page_content=desc, metadata={"sheet_name": name}) for name, desc in self.sheet_descriptions.items()]
|
|
|
|
|
|
|
|
|
|
| 95 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 96 |
splits = text_splitter.split_documents(documents)
|
| 97 |
self.vectorstore = FAISS.from_documents(splits, self.embeddings)
|
| 98 |
|
| 99 |
def identify_relevant_sheets(self, query: str) -> List[str]:
|
| 100 |
"""Identifies the most relevant sheets for a given query using the vector store."""
|
| 101 |
+
if not self.vectorstore: return list(self.excel_data.keys())
|
|
|
|
| 102 |
try:
|
| 103 |
+
docs = self.vectorstore.similarity_search(query, k=5)
|
| 104 |
sheet_names = [doc.metadata['sheet_name'] for doc in docs if 'sheet_name' in doc.metadata]
|
| 105 |
+
return list(dict.fromkeys(sheet_names))
|
| 106 |
except Exception:
|
| 107 |
return list(self.excel_data.keys())
|
| 108 |
|
| 109 |
+
def query_data(self, query: str, target_sheet: str = "Auto-Select") -> Dict[str, Any]:
|
| 110 |
+
"""--- MODIFIED: Processes a query, either against a specific sheet or by auto-selecting the most relevant ones. ---"""
|
| 111 |
+
results = {'query': query, 'relevant_sheets': [], 'sheet_results': {}, 'summary': ''}
|
| 112 |
+
|
| 113 |
try:
|
| 114 |
+
# Determine which sheets to query
|
| 115 |
+
if target_sheet and target_sheet != "Auto-Select":
|
| 116 |
+
relevant_sheets = [target_sheet]
|
| 117 |
+
if target_sheet not in self.excel_data:
|
| 118 |
+
results['summary'] = f"Error: The selected sheet '{target_sheet}' was not found or could not be loaded."
|
| 119 |
+
return results
|
| 120 |
+
else:
|
| 121 |
+
relevant_sheets = self.identify_relevant_sheets(query)
|
| 122 |
+
|
| 123 |
results['relevant_sheets'] = relevant_sheets
|
| 124 |
|
| 125 |
for sheet_name in relevant_sheets:
|
| 126 |
+
if sheet_name not in self.excel_data: continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
+
df = self.excel_data[sheet_name]
|
| 129 |
+
pandas_agent = create_pandas_dataframe_agent(self.llm, df, agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
|
| 130 |
+
response = pandas_agent.invoke(query)
|
| 131 |
+
results['sheet_results'][sheet_name] = {'response': response['output']}
|
| 132 |
|
| 133 |
results['summary'] = self._generate_summary(query, results['sheet_results'])
|
|
|
|
| 134 |
return results
|
| 135 |
except Exception as e:
|
| 136 |
+
results['summary'] = f"An error occurred while querying the data: {str(e)}"
|
| 137 |
return results
|
| 138 |
|
| 139 |
def _generate_summary(self, query: str, sheet_results: Dict) -> str:
|
| 140 |
"""Generates a final, consolidated summary from individual sheet analyses."""
|
| 141 |
+
if not sheet_results: return "No relevant data found to answer the query."
|
| 142 |
+
if len(sheet_results) == 1: return list(sheet_results.values())[0]['response']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
combined_responses = "\n\n".join([f"--- Analysis from Sheet '{name}' ---\n{res['response']}" for name, res in sheet_results.items()])
|
| 145 |
+
prompt = f"The following are answers to the query '{query}' from different data sheets. Synthesize them into a single, cohesive final answer.\n\n{combined_responses}\n\nProvide a final, consolidated answer."
|
| 146 |
+
return self.llm.invoke(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
# --- Gradio Interface ---
|
| 149 |
|
| 150 |
def process_file(api_key, file_obj):
|
| 151 |
+
"""--- MODIFIED: Also returns the list of sheet names to populate the dropdown. ---"""
|
| 152 |
+
if not api_key: raise gr.Error("OpenAI API Key is required.")
|
| 153 |
+
if file_obj is None: raise gr.Error("Please upload an Excel file.")
|
|
|
|
|
|
|
| 154 |
try:
|
| 155 |
excel_system = ExcelAIQuerySystem(api_key)
|
| 156 |
loading_logs = excel_system.load_excel_file(file_obj.name)
|
| 157 |
+
sheet_names = ["Auto-Select"] + list(excel_system.excel_data.keys())
|
| 158 |
|
| 159 |
return (
|
| 160 |
loading_logs,
|
| 161 |
excel_system,
|
| 162 |
+
gr.update(choices=sheet_names, value="Auto-Select", visible=True), # Update dropdown
|
| 163 |
gr.update(visible=True),
|
| 164 |
gr.update(visible=True),
|
| 165 |
gr.update(visible=True)
|
|
|
|
| 167 |
except Exception as e:
|
| 168 |
raise gr.Error(f"Failed to process file: {e}")
|
| 169 |
|
| 170 |
+
def generate_response(query, selected_sheet, system_state):
|
| 171 |
+
"""--- MODIFIED: Passes the selected sheet to the query function. ---"""
|
| 172 |
+
if not query: raise gr.Error("Please enter a query.")
|
| 173 |
+
if system_state is None: raise gr.Error("File not loaded. Please upload and load a file first.")
|
|
|
|
|
|
|
| 174 |
|
| 175 |
try:
|
| 176 |
+
result = system_state.query_data(query, target_sheet=selected_sheet)
|
| 177 |
summary = result.get('summary', 'No summary available.')
|
| 178 |
sheets = ", ".join(result.get('relevant_sheets', []))
|
| 179 |
+
details = f"**🔍 Sheets Queried:**\n{sheets}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
return summary, details
|
| 181 |
except Exception as e:
|
| 182 |
raise gr.Error(f"Error during query: {e}")
|
| 183 |
|
|
|
|
|
|
|
| 184 |
with gr.Blocks(theme=gr.themes.Soft(), title="Excel AI Query System") as demo:
|
| 185 |
system_state = gr.State(None)
|
| 186 |
|
| 187 |
gr.Markdown("# 📊 Excel AI Query System")
|
| 188 |
+
gr.Markdown("Upload an Excel file, choose a specific sheet or let the AI decide, and ask questions about your data.")
|
| 189 |
|
| 190 |
with gr.Row():
|
| 191 |
with gr.Column(scale=1):
|
| 192 |
gr.Markdown("### 1. Setup")
|
| 193 |
+
api_key_input = gr.Textbox(label="OpenAI API Key", type="password", placeholder="Enter your OpenAI API key...", value=os.getenv("OPENAI_API_KEY", ""))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
file_input = gr.File(label="Upload Excel File", file_types=[".xlsx", ".xls"])
|
| 195 |
load_button = gr.Button("Load File", variant="primary")
|
| 196 |
+
status_output = gr.Textbox(label="Loading Status", interactive=False, lines=10)
|
| 197 |
|
| 198 |
with gr.Column(scale=2):
|
| 199 |
gr.Markdown("### 2. Ask a Question")
|
| 200 |
+
# --- NEW: Dropdown for sheet selection ---
|
| 201 |
+
sheet_selector = gr.Dropdown(
|
| 202 |
+
label="Select a sheet to query",
|
| 203 |
+
info="Choose 'Auto-Select' to let the AI find the best sheet.",
|
| 204 |
+
visible=False,
|
| 205 |
+
interactive=True
|
| 206 |
)
|
| 207 |
+
query_input = gr.Textbox(label="Your Question", placeholder="e.g., 'What is the average revenue?'", visible=False)
|
| 208 |
ask_button = gr.Button("Get Answer", variant="primary", visible=False)
|
| 209 |
|
| 210 |
results_accordion = gr.Accordion("Results", open=False, visible=False)
|
|
|
|
| 212 |
summary_output = gr.Markdown(label="Summary")
|
| 213 |
details_output = gr.Markdown(label="Details")
|
| 214 |
|
|
|
|
|
|
|
| 215 |
load_button.click(
|
| 216 |
fn=process_file,
|
| 217 |
inputs=[api_key_input, file_input],
|
| 218 |
+
outputs=[status_output, system_state, sheet_selector, query_input, ask_button, results_accordion]
|
| 219 |
)
|
| 220 |
|
| 221 |
ask_button.click(
|
| 222 |
fn=generate_response,
|
| 223 |
+
inputs=[query_input, sheet_selector, system_state], # Add sheet_selector to inputs
|
| 224 |
outputs=[summary_output, details_output]
|
| 225 |
).then(
|
| 226 |
lambda: gr.update(open=True),
|
| 227 |
outputs=results_accordion
|
| 228 |
)
|
| 229 |
+
|
| 230 |
if __name__ == "__main__":
|
| 231 |
demo.launch()
|