Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,24 +3,69 @@ import torch
|
|
3 |
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
|
4 |
import tempfile
|
5 |
import os
|
|
|
|
|
6 |
|
7 |
# Load model and processor
|
8 |
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"
|
9 |
-
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
|
10 |
-
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
11 |
-
model_id,
|
12 |
-
torch_dtype=torch.float16,
|
13 |
-
device_map="auto"
|
14 |
-
)
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"""
|
18 |
Analyze dance video with pose scores and music information
|
19 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
try:
|
|
|
|
|
|
|
|
|
|
|
21 |
# Prepare the prompt
|
22 |
-
prompt = f"""
|
23 |
-
You are an expert dance instructor. Analyze this dance performance video.
|
24 |
|
25 |
Additional Data:
|
26 |
- MediaPipe Pose Scores: {pose_scores}
|
@@ -37,16 +82,20 @@ def analyze_dance_video(video_file, pose_scores = 0.85, music_info="Unknown"):
|
|
37 |
7. The accuracy and technique of the dancer's poses, considering the pose scores.
|
38 |
8. The fluidity and smoothness of transitions between moves.
|
39 |
9. Specific areas where the dancer can improve.
|
|
|
40 |
|
41 |
Give constructive feedback in a friendly, encouraging tone.
|
42 |
-
"""
|
43 |
|
44 |
-
# Process video
|
45 |
inputs = processor(
|
46 |
text=prompt,
|
47 |
-
videos=
|
48 |
return_tensors="pt"
|
49 |
-
)
|
|
|
|
|
|
|
50 |
|
51 |
# Generate response
|
52 |
with torch.no_grad():
|
@@ -55,14 +104,16 @@ def analyze_dance_video(video_file, pose_scores = 0.85, music_info="Unknown"):
|
|
55 |
max_new_tokens=500,
|
56 |
do_sample=True,
|
57 |
temperature=0.7,
|
58 |
-
pad_token_id=processor.tokenizer.eos_token_id
|
|
|
59 |
)
|
60 |
|
61 |
# Decode response
|
62 |
response = processor.decode(output[0], skip_special_tokens=True)
|
63 |
|
64 |
-
# Extract just the generated part (after
|
65 |
-
|
|
|
66 |
|
67 |
return response
|
68 |
|
@@ -77,17 +128,18 @@ with gr.Blocks(title="AI Dance Instructor") as demo:
|
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
video_input = gr.Video(
|
80 |
-
label="Upload Dance Video"
|
81 |
-
format="mp4"
|
82 |
)
|
83 |
pose_scores = gr.Textbox(
|
84 |
label="MediaPipe Pose Scores",
|
85 |
-
placeholder="Enter pose scores data from MediaPipe...",
|
86 |
-
|
|
|
87 |
)
|
88 |
music_info = gr.Textbox(
|
89 |
label="Music Information",
|
90 |
placeholder="BPM, genre, rhythm details...",
|
|
|
91 |
lines=3
|
92 |
)
|
93 |
analyze_btn = gr.Button("Analyze Dance", variant="primary")
|
@@ -106,17 +158,17 @@ with gr.Blocks(title="AI Dance Instructor") as demo:
|
|
106 |
outputs=[feedback_output]
|
107 |
)
|
108 |
|
109 |
-
# Add API endpoint
|
110 |
gr.Markdown("### API Usage")
|
111 |
gr.Markdown("""
|
112 |
-
**For Next.js Integration:**
|
113 |
```javascript
|
|
|
|
|
|
|
114 |
const response = await fetch('https://your-space-name.hf.space/api/predict', {
|
115 |
method: 'POST',
|
116 |
-
|
117 |
-
body: JSON.stringify({
|
118 |
-
data: [videoFile, poseScores, musicInfo]
|
119 |
-
})
|
120 |
});
|
121 |
```
|
122 |
""")
|
|
|
3 |
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
|
4 |
import tempfile
|
5 |
import os
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
|
9 |
# Load model and processor
|
10 |
model_id = "llava-hf/LLaVA-NeXT-Video-7B-hf"
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Initialize processor and model with error handling
|
13 |
+
try:
|
14 |
+
processor = LlavaNextVideoProcessor.from_pretrained(model_id)
|
15 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
16 |
+
model_id,
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
device_map="auto",
|
19 |
+
low_cpu_mem_usage=True
|
20 |
+
)
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error loading model: {e}")
|
23 |
+
processor = None
|
24 |
+
model = None
|
25 |
+
|
26 |
+
def process_video_file(video_path):
|
27 |
+
"""Convert video file to the format expected by the model"""
|
28 |
+
try:
|
29 |
+
# Read video using OpenCV
|
30 |
+
cap = cv2.VideoCapture(video_path)
|
31 |
+
frames = []
|
32 |
+
|
33 |
+
while True:
|
34 |
+
ret, frame = cap.read()
|
35 |
+
if not ret:
|
36 |
+
break
|
37 |
+
# Convert BGR to RGB
|
38 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
39 |
+
frames.append(frame)
|
40 |
+
|
41 |
+
cap.release()
|
42 |
+
|
43 |
+
# Convert to numpy array and normalize
|
44 |
+
video_frames = np.array(frames)
|
45 |
+
return video_frames
|
46 |
+
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error processing video: {e}")
|
49 |
+
return None
|
50 |
+
|
51 |
+
def analyze_dance_video(video_file, pose_scores="0.85", music_info="Unknown"):
|
52 |
"""
|
53 |
Analyze dance video with pose scores and music information
|
54 |
"""
|
55 |
+
if model is None or processor is None:
|
56 |
+
return "Error: Model not loaded properly. Please check the logs."
|
57 |
+
|
58 |
+
if video_file is None:
|
59 |
+
return "Please upload a video file."
|
60 |
+
|
61 |
try:
|
62 |
+
# Process the video file
|
63 |
+
video_frames = process_video_file(video_file)
|
64 |
+
if video_frames is None:
|
65 |
+
return "Error: Could not process video file."
|
66 |
+
|
67 |
# Prepare the prompt
|
68 |
+
prompt = f"""USER: You are an expert dance instructor. Analyze this dance performance video.
|
|
|
69 |
|
70 |
Additional Data:
|
71 |
- MediaPipe Pose Scores: {pose_scores}
|
|
|
82 |
7. The accuracy and technique of the dancer's poses, considering the pose scores.
|
83 |
8. The fluidity and smoothness of transitions between moves.
|
84 |
9. Specific areas where the dancer can improve.
|
85 |
+
|
86 |
|
87 |
Give constructive feedback in a friendly, encouraging tone.
|
88 |
+
ASSISTANT:"""
|
89 |
|
90 |
+
# Process video with the model
|
91 |
inputs = processor(
|
92 |
text=prompt,
|
93 |
+
videos=[video_frames], # Note: videos expects a list
|
94 |
return_tensors="pt"
|
95 |
+
)
|
96 |
+
|
97 |
+
# Move inputs to the same device as model
|
98 |
+
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
99 |
|
100 |
# Generate response
|
101 |
with torch.no_grad():
|
|
|
104 |
max_new_tokens=500,
|
105 |
do_sample=True,
|
106 |
temperature=0.7,
|
107 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
108 |
+
eos_token_id=processor.tokenizer.eos_token_id
|
109 |
)
|
110 |
|
111 |
# Decode response
|
112 |
response = processor.decode(output[0], skip_special_tokens=True)
|
113 |
|
114 |
+
# Extract just the generated part (after ASSISTANT:)
|
115 |
+
if "ASSISTANT:" in response:
|
116 |
+
response = response.split("ASSISTANT:")[-1].strip()
|
117 |
|
118 |
return response
|
119 |
|
|
|
128 |
with gr.Row():
|
129 |
with gr.Column():
|
130 |
video_input = gr.Video(
|
131 |
+
label="Upload Dance Video"
|
|
|
132 |
)
|
133 |
pose_scores = gr.Textbox(
|
134 |
label="MediaPipe Pose Scores",
|
135 |
+
placeholder="Enter pose scores data from MediaPipe (e.g., 0.85)...",
|
136 |
+
value="0.85",
|
137 |
+
lines=3
|
138 |
)
|
139 |
music_info = gr.Textbox(
|
140 |
label="Music Information",
|
141 |
placeholder="BPM, genre, rhythm details...",
|
142 |
+
value="120 BPM, Pop music",
|
143 |
lines=3
|
144 |
)
|
145 |
analyze_btn = gr.Button("Analyze Dance", variant="primary")
|
|
|
158 |
outputs=[feedback_output]
|
159 |
)
|
160 |
|
161 |
+
# Add API endpoint info
|
162 |
gr.Markdown("### API Usage")
|
163 |
gr.Markdown("""
|
164 |
+
**For Next.js Integration, use the API endpoint:**
|
165 |
```javascript
|
166 |
+
const formData = new FormData();
|
167 |
+
formData.append('data', JSON.stringify([videoFile, poseScores, musicInfo]));
|
168 |
+
|
169 |
const response = await fetch('https://your-space-name.hf.space/api/predict', {
|
170 |
method: 'POST',
|
171 |
+
body: formData
|
|
|
|
|
|
|
172 |
});
|
173 |
```
|
174 |
""")
|