Spaces:
Sleeping
Sleeping
AdilzhanB
commited on
Commit
·
80af471
1
Parent(s):
d14fbdf
App change
Browse files- README.md +32 -1
- app.py +86 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -10,5 +10,36 @@ pinned: false
|
|
| 10 |
license: mit
|
| 11 |
short_description: 🩺 Bone Age Prediction Gradio App
|
| 12 |
---
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: mit
|
| 11 |
short_description: 🩺 Bone Age Prediction Gradio App
|
| 12 |
---
|
| 13 |
+
# 🩺 Bone Age Prediction Gradio App
|
| 14 |
|
| 15 |
+
This Hugging Face Space provides an interactive demo for bone age estimation from hand X-ray images, based on the [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m) deep learning model (ResNet152, finetuned on the RSNA Pediatric Bone Age dataset).
|
| 16 |
+
|
| 17 |
+
## 🚀 What does this app do?
|
| 18 |
+
|
| 19 |
+
- **Upload a hand X-ray** (PNG/JPG).
|
| 20 |
+
- **Select the patient's gender** (Male/Female).
|
| 21 |
+
- **Get an instant prediction** of bone age in months (and years/months format) using a state-of-the-art neural network.
|
| 22 |
+
|
| 23 |
+
## 🧠 Model Details
|
| 24 |
+
|
| 25 |
+
- **Architecture:** ResNet152 + custom head (≈80M parameters)
|
| 26 |
+
- **Input:** 256x256 hand X-ray image & gender
|
| 27 |
+
- **Output:** Bone age (months)
|
| 28 |
+
- **Training Data:** [RSNA Bone Age Challenge](https://www.kaggle.com/datasets/kmader/rsna-bone-age)
|
| 29 |
+
- **Model Card:** [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m)
|
| 30 |
+
|
| 31 |
+
## 🌟 How to use
|
| 32 |
+
|
| 33 |
+
1. Upload a clear hand X-ray image (preferably as PNG).
|
| 34 |
+
2. Select the appropriate gender.
|
| 35 |
+
3. Press "Submit" to get the predicted bone age.
|
| 36 |
+
|
| 37 |
+
> **Note:** This app is for educational and research purposes only. Not for clinical use.
|
| 38 |
+
|
| 39 |
+
## 🏷️ Citation
|
| 40 |
+
|
| 41 |
+
If you use this demo or model, please cite the [RSNA Bone Age dataset](https://www.kaggle.com/datasets/kmader/rsna-bone-age) and this Hugging Face Space/model.
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
Built with ❤️ using Gradio and Hugging Face Spaces.
|
app.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import requests
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
import onnxruntime as ort
|
| 9 |
+
|
| 10 |
+
# ======================
|
| 11 |
+
# Model & Preprocessing
|
| 12 |
+
# ======================
|
| 13 |
+
MODEL_ONNX_URL = "https://huggingface.co/Adilbai/bone-age-resnet-80m/resolve/main/resnet_bone_age_80m.onnx"
|
| 14 |
+
|
| 15 |
+
def download_model(url, filename):
|
| 16 |
+
if not os.path.exists(filename):
|
| 17 |
+
print(f"Downloading model from {url}")
|
| 18 |
+
r = requests.get(url)
|
| 19 |
+
with open(filename, "wb") as f:
|
| 20 |
+
f.write(r.content)
|
| 21 |
+
|
| 22 |
+
import os
|
| 23 |
+
MODEL_PATH = "resnet_bone_age_80m.onnx"
|
| 24 |
+
download_model(MODEL_ONNX_URL, MODEL_PATH)
|
| 25 |
+
|
| 26 |
+
# Set up ONNX session
|
| 27 |
+
ort_session = ort.InferenceSession(MODEL_PATH)
|
| 28 |
+
|
| 29 |
+
# Define image preprocessing (must match training)
|
| 30 |
+
transform = transforms.Compose([
|
| 31 |
+
transforms.Resize((256, 256)),
|
| 32 |
+
transforms.ToTensor(),
|
| 33 |
+
transforms.Normalize([0.5]*3, [0.5]*3)
|
| 34 |
+
])
|
| 35 |
+
|
| 36 |
+
# ======================
|
| 37 |
+
# Inference Function
|
| 38 |
+
# ======================
|
| 39 |
+
def predict_bone_age(image, gender):
|
| 40 |
+
"""
|
| 41 |
+
image: PIL.Image
|
| 42 |
+
gender: string ("Male" or "Female")
|
| 43 |
+
"""
|
| 44 |
+
# Preprocess image
|
| 45 |
+
img_tensor = transform(image).unsqueeze(0).numpy()
|
| 46 |
+
# Gender: 0=male, 1=female
|
| 47 |
+
gender_val = 0.0 if gender.lower() == "male" else 1.0
|
| 48 |
+
gender_tensor = np.array([[gender_val]], dtype=np.float32)
|
| 49 |
+
|
| 50 |
+
# ONNX inference
|
| 51 |
+
outputs = ort_session.run(None, {"image": img_tensor, "gender": gender_tensor})
|
| 52 |
+
pred_age = outputs[0][0]
|
| 53 |
+
|
| 54 |
+
# Display as years and months
|
| 55 |
+
years = int(pred_age // 12)
|
| 56 |
+
months = int(pred_age % 12)
|
| 57 |
+
result_str = (
|
| 58 |
+
f"Predicted Bone Age: **{pred_age:.1f} months** \n"
|
| 59 |
+
f"≈ {years} years, {months} months"
|
| 60 |
+
)
|
| 61 |
+
return result_str
|
| 62 |
+
|
| 63 |
+
# ======================
|
| 64 |
+
# Gradio UI
|
| 65 |
+
# ======================
|
| 66 |
+
app_title = "Bone Age Prediction from Hand X-ray"
|
| 67 |
+
app_desc = """
|
| 68 |
+
Upload a hand X-ray image and select the patient's gender. This app will predict the bone age (in months) using a powerful deep learning model.
|
| 69 |
+
- Model: [bone-age-resnet-80m](https://huggingface.co/Adilbai/bone-age-resnet-80m)
|
| 70 |
+
- Data: RSNA Pediatric Bone Age Challenge
|
| 71 |
+
- **For research/educational use only.**
|
| 72 |
+
"""
|
| 73 |
+
iface = gr.Interface(
|
| 74 |
+
fn=predict_bone_age,
|
| 75 |
+
inputs=[
|
| 76 |
+
gr.Image(type="pil", label="Hand X-ray Image"),
|
| 77 |
+
gr.Radio(["Male", "Female"], label="Gender")
|
| 78 |
+
],
|
| 79 |
+
outputs=gr.Markdown(label="Prediction"),
|
| 80 |
+
title=app_title,
|
| 81 |
+
description=app_desc,
|
| 82 |
+
allow_flagging="never"
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
if __name__ == "__main__":
|
| 86 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
onnxruntime
|
| 5 |
+
Pillow
|
| 6 |
+
requests
|