text-to-speech / app.py
Adeal1's picture
update create_demo function to set api_name to 'predict'
93e3232
import gradio as gr
import edge_tts
import asyncio
import tempfile
import os
async def get_voices():
voices = await edge_tts.list_voices()
return {
f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
for v in voices
}
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, "Please enter text to convert."
if not voice:
return None, "Please select a voice."
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(
text, voice_short_name, rate=rate_str, pitch=pitch_str
)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
async def tts_interface(text, voice, rate, pitch):
audio, warning = await text_to_speech(text, voice, rate, pitch)
if warning:
return audio, gr.Warning(warning)
return audio, None
async def create_demo():
voices = await get_voices()
description = """
Convert text to speech using Microsoft Edge TTS. Adjust speech rate and pitch: 0 is default, positive values increase, negative values decrease.
**Note:** Edge TTS is a cloud-based service and requires an active internet connection."""
demo = gr.Interface(
fn=tts_interface,
inputs=[
gr.Textbox(label="Input Text", lines=5),
gr.Dropdown(
choices=[""] + list(voices.keys()), label="Select Voice", value=""
),
gr.Slider(
minimum=-50,
maximum=50,
value=0,
label="Speech Rate Adjustment (%)",
step=1,
),
gr.Slider(
minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1
),
],
outputs=[
gr.Audio(label="Generated Audio", type="filepath"),
gr.Markdown(label="Warning", visible=False),
],
title="Edge TTS Text-to-Speech",
description=description,
article="Experience the power of Edge TTS for text-to-speech conversion, and explore our advanced Text-to-Video Converter for even more creative possibilities!",
analytics_enabled=False,
allow_flagging="manual",
api_name="predict",
)
return demo
async def main():
demo = await create_demo()
demo.queue(default_concurrency_limit=5)
demo.launch(show_api=True)
if __name__ == "__main__":
asyncio.run(main())