Spaces:
Running
Running
import pandas as pd | |
import streamlit as st | |
import numpy as np | |
from matplotlib import pyplot as plt | |
import pickle | |
import sklearn | |
import joblib | |
from PIL import Image | |
import base64 | |
num_imputer = joblib.load('numerical_imputer.joblib') | |
cat_imputer = joblib.load('categorical_imputer.joblib') | |
encoder = joblib.load('encoder.joblib') | |
scaler = joblib.load('scaler.joblib') | |
dt_model = joblib.load('Final_model.joblib') | |
# Add a title and subtitle | |
st.write("<center><h1>Sales Prediction App</h1></center>", unsafe_allow_html=True) | |
#image = Image.open("grocery_shopping_woman.png") | |
# Display the image | |
#st.image(image, width=600) | |
# Load the image | |
image = Image.open("grocery_shopping_woman.png") | |
# Set up the layout | |
col1, col2, col3 = st.columns([1, 3, 3]) | |
col2.image(image, width=600) | |
#st.image("https://www.example.com/logo.png", width=200) | |
# Add a subtitle or description | |
st.write("This app uses machine learning to predict sales based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!") | |
st.subheader("Enter the details to predict sales") | |
# Add some text | |
#st.write("Enter some data for Prediction.") | |
# Create the input fields | |
input_data = {} | |
col1,col2 = st.columns(2) | |
with col1: | |
input_data['store_nbr'] = st.slider("store_nbr",0,54) | |
input_data['products'] = st.selectbox("products", ['AUTOMOTIVE', 'CLEANING', 'BEAUTY', 'FOODS', 'STATIONERY', | |
'CELEBRATION', 'GROCERY', 'HARDWARE', 'HOME', 'LADIESWEAR', | |
'LAWN AND GARDEN', 'CLOTHING', 'LIQUOR,WINE,BEER', 'PET SUPPLIES']) | |
input_data['onpromotion'] =st.number_input("onpromotion",step=1) | |
input_data['state'] = st.selectbox("state", ['Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura', | |
'Santo Domingo de los Tsachilas', 'Bolivar', 'Pastaza', | |
'Tungurahua', 'Guayas', 'Santa Elena', 'Los Rios', 'Azuay', 'Loja', | |
'El Oro', 'Esmeraldas', 'Manabi']) | |
input_data['store_type'] = st.selectbox("store_type",['D', 'C', 'B', 'E', 'A']) | |
input_data['cluster'] = st.number_input("cluster",step=1) | |
with col2: | |
input_data['dcoilwtico'] = st.number_input("dcoilwtico",step=1) | |
input_data['year'] = st.number_input("year",step=1) | |
input_data['month'] = st.slider("month",1,12) | |
input_data['day'] = st.slider("day",1,31) | |
input_data['dayofweek'] = st.number_input("dayofweek,0=Sun and 6=Sat",step=1) | |
input_data['end_month'] = st.selectbox("end_month",['True','False']) | |
# Define CSS style for the download button | |
# Define the custom CSS | |
predict_button_css = """ | |
<style> | |
.predict-button { | |
background-color: #C4C4C4; | |
color: gray; | |
padding: 0.75rem 2rem; | |
border-radius: 0.5rem; | |
border: none; | |
font-size: 1.1rem; | |
font-weight: bold; | |
text-align: center; | |
margin-top: 2rem; | |
} | |
</style> | |
""" | |
download_button_css = """ | |
<style> | |
.download-button { | |
background-color: #C4C4C4; | |
color: white; | |
padding: 0.75rem 2rem; | |
border-radius: 0.5rem; | |
border: none; | |
font-size: 1.1rem; | |
font-weight: bold; | |
text-align: center; | |
margin-top: 1rem; | |
} | |
</style> | |
""" | |
# Display the custom CSS | |
st.markdown(predict_button_css + download_button_css, unsafe_allow_html=True) | |
# Create a button to make a prediction | |
if st.button("Predict", key="predict_button", help="Click to make a prediction."): | |
# Convert the input data to a pandas DataFrame | |
input_df = pd.DataFrame([input_data]) | |
# Selecting categorical and numerical columns separately | |
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object'] | |
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object'] | |
# Apply the imputers | |
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns]) | |
input_df_imputed_num = num_imputer.transform(input_df[num_columns]) | |
# Encode the categorical columns | |
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(), | |
columns=encoder.get_feature_names(cat_columns)) | |
# Scale the numerical columns | |
input_df_scaled = scaler.transform(input_df_imputed_num) | |
input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns) | |
#joining the cat encoded and num scaled | |
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1) | |
# Make a prediction | |
prediction = dt_model.predict(final_df)[0] | |
# Display the prediction | |
st.write(f"The predicted sales are: {prediction}.") | |
input_df.to_csv("data.csv", index=False) | |
st.table(input_df) | |
# Define custom CSS | |
css = """ | |
table { | |
background-color: #f2f2f2; | |
color: #333333; | |
} | |
""" | |
# Set custom CSS | |
st.write(f'<style>{css}</style>', unsafe_allow_html=True) | |
# Add the download button | |
def download_csv(): | |
with open("data.csv", "r") as f: | |
csv = f.read() | |
b64 = base64.b64encode(csv.encode()).decode() | |
button = f'<button class="download-button"><a href="data:file/csv;base64,{b64}" download="data.csv">Download Data CSV</a></button>' | |
return button | |
st.markdown( | |
f'<div style="text-align: center">{download_csv()}</div>', | |
unsafe_allow_html=True | |
) | |