Spaces:
Runtime error
Runtime error
Commit
Β·
a4e1cd2
1
Parent(s):
12aa86c
app.py
CHANGED
|
@@ -4,7 +4,6 @@ import gradio as gr
|
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from PIL import Image
|
| 7 |
-
import spaces
|
| 8 |
from transformers import T5Tokenizer, T5EncoderModel
|
| 9 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
|
| 10 |
from safetensors.torch import load_file
|
|
@@ -13,20 +12,14 @@ from two_stream_shunt_adapter import TwoStreamShuntAdapter
|
|
| 13 |
from configs import T5_SHUNT_REPOS
|
| 14 |
|
| 15 |
# βββ Device & Model Setup βββββββββββββββββββββββββββββββββββββ
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# T5 Model for semantic understanding
|
| 20 |
-
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
| 21 |
-
t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
variant="fp16" if dtype == torch.float16 else None,
|
| 28 |
-
use_safetensors=True
|
| 29 |
-
).to(device)
|
| 30 |
|
| 31 |
# Available schedulers
|
| 32 |
SCHEDULERS = {
|
|
@@ -47,6 +40,7 @@ config_g = T5_SHUNT_REPOS["clip_g"]["config"]
|
|
| 47 |
from safetensors.torch import safe_open
|
| 48 |
|
| 49 |
def load_adapter(repo, filename, config):
|
|
|
|
| 50 |
path = hf_hub_download(repo_id=repo, filename=filename)
|
| 51 |
|
| 52 |
model = TwoStreamShuntAdapter(config).eval()
|
|
@@ -55,7 +49,7 @@ def load_adapter(repo, filename, config):
|
|
| 55 |
for key in f.keys():
|
| 56 |
tensors[key] = f.get_tensor(key)
|
| 57 |
model.load_state_dict(tensors)
|
| 58 |
-
|
| 59 |
return model
|
| 60 |
|
| 61 |
# βββ Visualization ββββββββββββββββββββββββββββββββββββββββββββ
|
|
@@ -135,11 +129,34 @@ def encode_sdxl_prompt(prompt, negative_prompt=""):
|
|
| 135 |
}
|
| 136 |
|
| 137 |
# βββ Inference ββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
@spaces.GPU
|
| 139 |
@torch.no_grad()
|
| 140 |
def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, noise, gate_prob,
|
| 141 |
use_anchor, steps, cfg_scale, scheduler_name, width, height, seed):
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
# Set seed for reproducibility
|
| 144 |
if seed != -1:
|
| 145 |
torch.manual_seed(seed)
|
|
@@ -168,8 +185,8 @@ def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, noi
|
|
| 168 |
print(f"CLIP-G shape: {clip_embeds['clip_g'].shape}")
|
| 169 |
|
| 170 |
# Load adapters
|
| 171 |
-
adapter_l = load_adapter(repo_l, adapter_l_file, config_l) if adapter_l_file else None
|
| 172 |
-
adapter_g = load_adapter(repo_g, adapter_g_file, config_g) if adapter_g_file else None
|
| 173 |
|
| 174 |
# Apply CLIP-L adapter
|
| 175 |
if adapter_l is not None:
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
from transformers import T5Tokenizer, T5EncoderModel
|
| 8 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
|
| 9 |
from safetensors.torch import load_file
|
|
|
|
| 12 |
from configs import T5_SHUNT_REPOS
|
| 13 |
|
| 14 |
# βββ Device & Model Setup βββββββββββββββββββββββββββββββββββββ
|
| 15 |
+
# Don't initialize CUDA here for ZeroGPU compatibility
|
| 16 |
+
device = None # Will be set inside the GPU function
|
| 17 |
+
dtype = torch.float16
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Don't load models here - will load inside GPU function
|
| 20 |
+
t5_tok = None
|
| 21 |
+
t5_mod = None
|
| 22 |
+
pipe = None
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Available schedulers
|
| 25 |
SCHEDULERS = {
|
|
|
|
| 40 |
from safetensors.torch import safe_open
|
| 41 |
|
| 42 |
def load_adapter(repo, filename, config):
|
| 43 |
+
# Don't initialize device here
|
| 44 |
path = hf_hub_download(repo_id=repo, filename=filename)
|
| 45 |
|
| 46 |
model = TwoStreamShuntAdapter(config).eval()
|
|
|
|
| 49 |
for key in f.keys():
|
| 50 |
tensors[key] = f.get_tensor(key)
|
| 51 |
model.load_state_dict(tensors)
|
| 52 |
+
# Device will be set when called from GPU function
|
| 53 |
return model
|
| 54 |
|
| 55 |
# βββ Visualization ββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 129 |
}
|
| 130 |
|
| 131 |
# βββ Inference ββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 132 |
+
@torch.no_grad()
|
| 133 |
+
def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, noise, gate_prob,
|
| 134 |
+
use_anchor, steps, cfg_scale, scheduler_name, width, height, seed):
|
| 135 |
+
|
| 136 |
+
# βββ Inference ββββββββββββββββββββββββββββββββββββββββββββ
|
| 137 |
@spaces.GPU
|
| 138 |
@torch.no_grad()
|
| 139 |
def infer(prompt, negative_prompt, adapter_l_file, adapter_g_file, strength, noise, gate_prob,
|
| 140 |
use_anchor, steps, cfg_scale, scheduler_name, width, height, seed):
|
| 141 |
|
| 142 |
+
# Initialize device and models inside GPU context
|
| 143 |
+
global t5_tok, t5_mod, pipe
|
| 144 |
+
device = torch.device("cuda")
|
| 145 |
+
dtype = torch.float16
|
| 146 |
+
|
| 147 |
+
# Load models if not already loaded
|
| 148 |
+
if t5_tok is None:
|
| 149 |
+
t5_tok = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
| 150 |
+
t5_mod = T5EncoderModel.from_pretrained("google/flan-t5-base").to(device).eval()
|
| 151 |
+
|
| 152 |
+
if pipe is None:
|
| 153 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 154 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 155 |
+
torch_dtype=dtype,
|
| 156 |
+
variant="fp16",
|
| 157 |
+
use_safetensors=True
|
| 158 |
+
).to(device)
|
| 159 |
+
|
| 160 |
# Set seed for reproducibility
|
| 161 |
if seed != -1:
|
| 162 |
torch.manual_seed(seed)
|
|
|
|
| 185 |
print(f"CLIP-G shape: {clip_embeds['clip_g'].shape}")
|
| 186 |
|
| 187 |
# Load adapters
|
| 188 |
+
adapter_l = load_adapter(repo_l, adapter_l_file, config_l).to(device) if adapter_l_file else None
|
| 189 |
+
adapter_g = load_adapter(repo_g, adapter_g_file, config_g).to(device) if adapter_g_file else None
|
| 190 |
|
| 191 |
# Apply CLIP-L adapter
|
| 192 |
if adapter_l is not None:
|