Spaces:
Running
on
Zero
Running
on
Zero
Create beeper_model.py
Browse files- beeper_model.py +271 -0
beeper_model.py
ADDED
|
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
beeper_model.py - Core model module for Beeper
|
| 3 |
+
Extracted from the training code for use in inference/apps
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
import math
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
from typing import Optional
|
| 13 |
+
from safetensors.torch import load_file as load_safetensors
|
| 14 |
+
|
| 15 |
+
# =========================================================================================
|
| 16 |
+
# Model Components
|
| 17 |
+
# =========================================================================================
|
| 18 |
+
|
| 19 |
+
class CausalSelfAttention(nn.Module):
|
| 20 |
+
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
|
| 21 |
+
super().__init__()
|
| 22 |
+
assert dim % n_heads == 0
|
| 23 |
+
self.nh = n_heads
|
| 24 |
+
self.hd = dim // n_heads
|
| 25 |
+
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
|
| 26 |
+
self.proj = nn.Linear(dim, dim, bias=False)
|
| 27 |
+
self.attn_dropout = attn_dropout
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
B, T, C = x.shape
|
| 31 |
+
qkv = self.qkv(x)
|
| 32 |
+
q, k, v = qkv.chunk(3, dim=-1)
|
| 33 |
+
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 34 |
+
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 35 |
+
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
|
| 36 |
+
|
| 37 |
+
# Use scaled_dot_product_attention when available
|
| 38 |
+
y = F.scaled_dot_product_attention(
|
| 39 |
+
q, k, v,
|
| 40 |
+
is_causal=True,
|
| 41 |
+
dropout_p=self.attn_dropout if self.training else 0.0,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 45 |
+
return self.proj(y)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class MLP(nn.Module):
|
| 49 |
+
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
|
| 50 |
+
super().__init__()
|
| 51 |
+
hidden = int(dim * mlp_ratio)
|
| 52 |
+
self.fc1 = nn.Linear(dim, hidden)
|
| 53 |
+
self.fc2 = nn.Linear(hidden, dim)
|
| 54 |
+
self.drop = nn.Dropout(dropout)
|
| 55 |
+
|
| 56 |
+
def forward(self, x):
|
| 57 |
+
x = self.fc1(x)
|
| 58 |
+
x = F.gelu(x, approximate="tanh")
|
| 59 |
+
x = self.drop(x)
|
| 60 |
+
x = self.fc2(x)
|
| 61 |
+
x = self.drop(x)
|
| 62 |
+
return x
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class BeeperRoseGPT(nn.Module):
|
| 66 |
+
def __init__(self, cfg: dict):
|
| 67 |
+
super().__init__()
|
| 68 |
+
V = cfg.get("vocab_size", 8192)
|
| 69 |
+
D = cfg.get("dim", 512)
|
| 70 |
+
Ctx = cfg.get("context", 512)
|
| 71 |
+
H = cfg.get("n_heads", 8)
|
| 72 |
+
L = cfg.get("n_layers", 6)
|
| 73 |
+
MR = cfg.get("mlp_ratio", 4.0)
|
| 74 |
+
RD = cfg.get("resid_dropout", 0.1)
|
| 75 |
+
AD = cfg.get("dropout", 0.0)
|
| 76 |
+
|
| 77 |
+
self.vocab_size = V
|
| 78 |
+
self.context = Ctx
|
| 79 |
+
|
| 80 |
+
# Core transformer components
|
| 81 |
+
self.token_emb = nn.Embedding(V, D)
|
| 82 |
+
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
|
| 83 |
+
self.drop = nn.Dropout(RD)
|
| 84 |
+
|
| 85 |
+
self.blocks = nn.ModuleList([
|
| 86 |
+
nn.ModuleDict({
|
| 87 |
+
"norm1": nn.LayerNorm(D),
|
| 88 |
+
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
|
| 89 |
+
"norm2": nn.LayerNorm(D),
|
| 90 |
+
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
|
| 91 |
+
}) for _ in range(L)
|
| 92 |
+
])
|
| 93 |
+
|
| 94 |
+
self.norm = nn.LayerNorm(D)
|
| 95 |
+
self.lm_head = nn.Linear(D, V, bias=False)
|
| 96 |
+
|
| 97 |
+
# Weight tying
|
| 98 |
+
self.lm_head.weight = self.token_emb.weight
|
| 99 |
+
|
| 100 |
+
# Rose components (for compatibility, may not be used in inference)
|
| 101 |
+
self.rose_proj = nn.Linear(D, D, bias=False)
|
| 102 |
+
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
|
| 103 |
+
|
| 104 |
+
# Pentachora placeholders (not needed for inference but for weight compatibility)
|
| 105 |
+
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
|
| 106 |
+
self.penta_coarse = None
|
| 107 |
+
self.penta_medium = None
|
| 108 |
+
self.penta_fine = None
|
| 109 |
+
|
| 110 |
+
self.apply(self._init)
|
| 111 |
+
self.grad_checkpoint = False
|
| 112 |
+
|
| 113 |
+
@staticmethod
|
| 114 |
+
def _init(m):
|
| 115 |
+
if isinstance(m, nn.Linear):
|
| 116 |
+
nn.init.normal_(m.weight, mean=0.0, std=0.02)
|
| 117 |
+
if m.bias is not None:
|
| 118 |
+
nn.init.zeros_(m.bias)
|
| 119 |
+
elif isinstance(m, nn.Embedding):
|
| 120 |
+
nn.init.normal_(m.weight, mean=0.0, std=0.02)
|
| 121 |
+
|
| 122 |
+
def _block_forward(self, blk, x):
|
| 123 |
+
x = x + blk["attn"](blk["norm1"](x))
|
| 124 |
+
x = x + blk["mlp"](blk["norm2"](x))
|
| 125 |
+
return x
|
| 126 |
+
|
| 127 |
+
def backbone(self, idx):
|
| 128 |
+
B, T = idx.shape
|
| 129 |
+
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
|
| 130 |
+
x = self.drop(x)
|
| 131 |
+
|
| 132 |
+
for blk in self.blocks:
|
| 133 |
+
x = self._block_forward(blk, x)
|
| 134 |
+
|
| 135 |
+
return self.norm(x)
|
| 136 |
+
|
| 137 |
+
def forward(self, idx):
|
| 138 |
+
h = self.backbone(idx)
|
| 139 |
+
return self.lm_head(h)
|
| 140 |
+
|
| 141 |
+
def hidden_states(self, idx):
|
| 142 |
+
return self.backbone(idx)
|
| 143 |
+
|
| 144 |
+
def load_state_dict(self, state_dict, strict=False):
|
| 145 |
+
"""Custom load that handles pentachora bank initialization gracefully"""
|
| 146 |
+
# Clean state dict keys
|
| 147 |
+
cleaned = {}
|
| 148 |
+
for k, v in state_dict.items():
|
| 149 |
+
if k.startswith("_orig_mod."):
|
| 150 |
+
k = k[10:]
|
| 151 |
+
if k.startswith("module."):
|
| 152 |
+
k = k[7:]
|
| 153 |
+
cleaned[k] = v
|
| 154 |
+
|
| 155 |
+
# Initialize pentachora if present in checkpoint
|
| 156 |
+
if "penta_coarse" in cleaned:
|
| 157 |
+
self.penta_coarse = nn.Parameter(cleaned["penta_coarse"])
|
| 158 |
+
if "penta_medium" in cleaned:
|
| 159 |
+
self.penta_medium = nn.Parameter(cleaned["penta_medium"])
|
| 160 |
+
if "penta_fine" in cleaned:
|
| 161 |
+
self.penta_fine = nn.Parameter(cleaned["penta_fine"])
|
| 162 |
+
|
| 163 |
+
return super().load_state_dict(cleaned, strict=strict)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# =========================================================================================
|
| 167 |
+
# Generation
|
| 168 |
+
# =========================================================================================
|
| 169 |
+
|
| 170 |
+
def _detokenize(text: str) -> str:
|
| 171 |
+
"""Clean up tokenization artifacts"""
|
| 172 |
+
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
|
| 173 |
+
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
|
| 174 |
+
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
|
| 175 |
+
return text
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
@torch.no_grad()
|
| 179 |
+
def generate(
|
| 180 |
+
model: BeeperRoseGPT,
|
| 181 |
+
tok, # Tokenizer
|
| 182 |
+
cfg: dict,
|
| 183 |
+
prompt: str,
|
| 184 |
+
max_new_tokens: int = 120,
|
| 185 |
+
temperature: float = None,
|
| 186 |
+
top_k: int = None,
|
| 187 |
+
top_p: float = None,
|
| 188 |
+
repetition_penalty: float = None,
|
| 189 |
+
presence_penalty: float = None,
|
| 190 |
+
frequency_penalty: float = None,
|
| 191 |
+
device: Optional[torch.device] = None,
|
| 192 |
+
detokenize: bool = True
|
| 193 |
+
) -> str:
|
| 194 |
+
"""
|
| 195 |
+
Generate text from Beeper model with various sampling strategies.
|
| 196 |
+
"""
|
| 197 |
+
# Use defaults from config if not specified
|
| 198 |
+
temperature = temperature if temperature is not None else cfg.get("temperature", 0.9)
|
| 199 |
+
top_k = top_k if top_k is not None else cfg.get("top_k", 40)
|
| 200 |
+
top_p = top_p if top_p is not None else cfg.get("top_p", 0.9)
|
| 201 |
+
repetition_penalty = repetition_penalty if repetition_penalty is not None else cfg.get("repetition_penalty", 1.1)
|
| 202 |
+
presence_penalty = presence_penalty if presence_penalty is not None else cfg.get("presence_penalty", 0.6)
|
| 203 |
+
frequency_penalty = frequency_penalty if frequency_penalty is not None else cfg.get("frequency_penalty", 0.0)
|
| 204 |
+
|
| 205 |
+
device = device or next(model.parameters()).device
|
| 206 |
+
model.eval()
|
| 207 |
+
|
| 208 |
+
# Encode prompt
|
| 209 |
+
ids = tok.encode(prompt).ids
|
| 210 |
+
x = torch.tensor([ids], dtype=torch.long, device=device)
|
| 211 |
+
|
| 212 |
+
# Track token frequencies for penalties
|
| 213 |
+
vocab_size = cfg.get("vocab_size", 8192)
|
| 214 |
+
counts = torch.zeros(vocab_size, dtype=torch.int32, device=device)
|
| 215 |
+
for t in ids:
|
| 216 |
+
if 0 <= t < vocab_size:
|
| 217 |
+
counts[t] += 1
|
| 218 |
+
|
| 219 |
+
# Generate tokens
|
| 220 |
+
for _ in range(max_new_tokens):
|
| 221 |
+
# Get logits for next token
|
| 222 |
+
context_window = cfg.get("context", 512)
|
| 223 |
+
logits = model(x[:, -context_window:])
|
| 224 |
+
logits = logits[:, -1, :]
|
| 225 |
+
|
| 226 |
+
# Apply repetition penalty
|
| 227 |
+
if repetition_penalty and repetition_penalty != 1.0:
|
| 228 |
+
mask = counts > 0
|
| 229 |
+
if mask.any():
|
| 230 |
+
pos = logits[:, mask] > 0
|
| 231 |
+
logits[:, mask][pos] /= repetition_penalty
|
| 232 |
+
logits[:, mask][~pos] *= repetition_penalty
|
| 233 |
+
|
| 234 |
+
# Apply presence and frequency penalties
|
| 235 |
+
if presence_penalty or frequency_penalty:
|
| 236 |
+
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
|
| 237 |
+
logits = logits - pen.unsqueeze(0)
|
| 238 |
+
|
| 239 |
+
# Temperature scaling
|
| 240 |
+
logits = logits / max(1e-8, temperature)
|
| 241 |
+
|
| 242 |
+
# Top-k filtering
|
| 243 |
+
if top_k and top_k > 0:
|
| 244 |
+
k = min(top_k, logits.size(-1))
|
| 245 |
+
v, ix = torch.topk(logits, k, dim=-1)
|
| 246 |
+
filt = torch.full_like(logits, float("-inf"))
|
| 247 |
+
logits = filt.scatter_(-1, ix, v)
|
| 248 |
+
|
| 249 |
+
# Top-p (nucleus) filtering
|
| 250 |
+
if top_p and top_p < 1.0:
|
| 251 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 252 |
+
probs = F.softmax(sorted_logits, dim=-1)
|
| 253 |
+
cumulative_probs = torch.cumsum(probs, dim=-1)
|
| 254 |
+
|
| 255 |
+
# Find cutoff
|
| 256 |
+
cutoff_idx = (cumulative_probs > top_p).float().argmax(dim=-1)
|
| 257 |
+
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff_idx.unsqueeze(-1)
|
| 258 |
+
sorted_logits = sorted_logits.masked_fill(mask, float("-inf"))
|
| 259 |
+
logits = torch.full_like(logits, float("-inf")).scatter(-1, sorted_indices, sorted_logits)
|
| 260 |
+
|
| 261 |
+
# Sample next token
|
| 262 |
+
probs = F.softmax(logits, dim=-1)
|
| 263 |
+
next_id = torch.multinomial(probs, num_samples=1)
|
| 264 |
+
|
| 265 |
+
# Append to sequence
|
| 266 |
+
x = torch.cat([x, next_id], dim=1)
|
| 267 |
+
counts[next_id.item()] += 1
|
| 268 |
+
|
| 269 |
+
# Decode output
|
| 270 |
+
output = tok.decode(x[0].tolist())
|
| 271 |
+
return _detokenize(output) if detokenize else output
|