Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 10,173 Bytes
			
			| 037fce6 03c8105 4d83981 03c8105 4d83981 037fce6 03c8105 6bede26 03c8105 6bede26 95569eb d7f01ca 95569eb 4360288 d7f01ca 95569eb 4360288 95569eb 4360288 6bede26 d7f01ca 6bede26 03c8105 6bede26 4d83981 03c8105 037fce6 4360288 037fce6 6bede26 4d83981 6bede26 4d83981 95569eb 6bede26 037fce6 03c8105 95569eb 6bede26 4360288 fae170d 4360288 4d83981 4360288 4d83981 03c8105 95569eb 4d83981 fae170d 95569eb 4360288 48dfa68 03c8105 4d83981 4360288 4d83981 4360288 4d83981 4360288 037fce6 03c8105 6bede26 95569eb 6bede26 95569eb 6bede26 9864aee 95569eb 6bede26 95569eb 6bede26 0d5344f 9864aee 0d5344f 6bede26 95569eb 6bede26 95569eb 6bede26 037fce6 4d83981 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | import gradio as gr
import torch
from beeper_model import BeeperRoseGPT, generate
from tokenizers import Tokenizer
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file as load_safetensors
# ----------------------------
# 🔧 Model versions configuration
# ----------------------------
MODEL_VERSIONS = {
    "Beeper v4 (Advanced)": {
        "repo_id": "AbstractPhil/beeper-rose-v4",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v4 with nearly 40% the full corpus training - the most capable version currently."
    },
    "Beeper v3 (Multi-Concept)": {
        "repo_id": "AbstractPhil/beeper-rose-v3",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v3 with 30+ epochs including reasoning, math, and ethics"
    },
    "Beeper v2 (Extended)": {
        "repo_id": "AbstractPhil/beeper-rose-v2",
        "model_file": "beeper_final.safetensors",
        "description": "Beeper v2 with extended training (~15 epochs)"
    },
    "Beeper v1 (Original)": {
        "repo_id": "AbstractPhil/beeper-rose-tinystories-6l-512d-ctx512",
        "model_file": "beeper_rose.safetensors",
        "description": "Original Beeper trained on TinyStories"
    },
}
# Base configuration
config = {
    "context": 512,
    "vocab_size": 8192,
    "dim": 512,
    "n_heads": 8,
    "n_layers": 6,
    "mlp_ratio": 4.0,
    "temperature": 0.9,
    "top_k": 40,
    "top_p": 0.9,
    "repetition_penalty": 1.1,
    "presence_penalty": 0.6,
    "frequency_penalty": 0.0,
    "resid_dropout": 0.1,
    "dropout": 0.0,
    "grad_checkpoint": False,
    "tokenizer_path": "beeper.tokenizer.json"
}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Global model and tokenizer variables
infer = None
tok = None
current_version = None
def load_model_version(version_name):
    """Load the selected model version"""
    global infer, tok, current_version
    
    if current_version == version_name and infer is not None:
        return f"Already loaded: {version_name}"
    
    version_info = MODEL_VERSIONS[version_name]
    
    try:
        # Download model and tokenizer files
        model_file = hf_hub_download(
            repo_id=version_info["repo_id"], 
            filename=version_info["model_file"]
        )
        tokenizer_file = hf_hub_download(
            repo_id=version_info["repo_id"], 
            filename="tokenizer.json"
        )
        
        # Initialize model
        infer = BeeperRoseGPT(config).to(device)
        
        # Load safetensors
        state_dict = load_safetensors(model_file, device=str(device))
        infer.load_state_dict(state_dict)
        infer.eval()
        
        # Load tokenizer
        tok = Tokenizer.from_file(tokenizer_file)
        
        current_version = version_name
        return f"Successfully loaded: {version_name}"
    
    except Exception as e:
        return f"Error loading {version_name}: {str(e)}"
# Load default model on startup - try v4 first, fallback to v3
try:
    load_status = load_model_version("Beeper v4 (Advanced)")
    if "Error" in load_status:
        print(f"v4 not ready yet: {load_status}")
        load_status = load_model_version("Beeper v3 (Multi-Concept)")
except:
    load_status = load_model_version("Beeper v3 (Multi-Concept)")
    
print(load_status)
# ----------------------------
# 💬 Gradio Chat Wrapper
# ----------------------------
def beeper_reply(message, history, model_version, temperature=None, top_k=None, top_p=None, max_new_tokens=80):
    global infer, tok, current_version
    
    # Load model if version changed
    if model_version != current_version:
        status = load_model_version(model_version)
        if "Error" in status:
            return f"⚠️ {status}"
    
    # Check if model is loaded
    if infer is None or tok is None:
        return "⚠️ Model not loaded. Please select a version and try again."
    
    # Use defaults if not provided
    if temperature is None:
        temperature = 0.9
    if top_k is None:
        top_k = 40
    if top_p is None:
        top_p = 0.9
    
    # Try Q&A format since she has some in corpus
    if "?" in message:
        prompt = f"Q: {message}\nA:"
    elif message.lower().strip() in ["hi", "hello", "hey"]:
        prompt = "The little robot said hello. She said, \""
    elif "story" in message.lower():
        prompt = "Once upon a time, there was a robot. "
    else:
        # Simple continuation
        prompt = message + ". "
    
    # Generate response with lower temperature for less repetition
    response = generate(
        model=infer,
        tok=tok,
        cfg=config,
        prompt=prompt,
        max_new_tokens=max_new_tokens,  # Shorter to avoid rambling
        temperature=float(temperature),  # Slightly lower temp
        top_k=int(top_k),
        top_p=float(top_p),
        repetition_penalty=1.1,  # Higher penalty for repetition
        presence_penalty=0.8,    # Higher presence penalty
        frequency_penalty=0.1,    # Add frequency penalty
        device=device,
        detokenize=True
    )
    
    # Aggressive cleanup
    # Remove the prompt completely
    if response.startswith(prompt):
        response = response[len(prompt):]
    
    # Remove Q&A format artifacts
    response = response.replace("Q:", "").replace("A:", "")
    
    # Split on newlines and take first non-empty line
    lines = response.split('\n')
    for line in lines:
        clean_line = line.strip()
        if clean_line and not clean_line.startswith(message[:10]):
            response = clean_line
            break
    
    # If response still contains the user message, try to extract after it
    if message.lower()[:20] in response.lower()[:50]:
        # Find where the echo ends
        words_in_message = message.split()
        for i in range(min(5, len(words_in_message)), 0, -1):
            pattern = ' '.join(words_in_message[:i])
            if pattern.lower() in response.lower():
                idx = response.lower().find(pattern.lower()) + len(pattern)
                response = response[idx:].strip()
                break
    
    # Remove any remaining "User" or "Beeper" artifacts
    for artifact in ["User:", "Beeper:", "U ser:", "Beep er:", "User ", "Beeper "]:
        response = response.replace(artifact, "")
    
    # Ensure we have something
    if not response or len(response) < 3:
        responses = [
            "I like robots and stories!",
            "That's interesting!",
            "I want to play in the park.",
            "The robot was happy.",
            "Yes, I think so too!"
        ]
        import random
        response = random.choice(responses)
    
    # Clean ending
    response = response.strip()
    if response and response[-1] not in '.!?"':
        response = response.rsplit('.', 1)[0] + '.' if '.' in response else response + '.'
    
    return response[:200]  # Cap length
# ----------------------------
# 🖼️ Interface
# ----------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # 🤖 Beeper - A Rose-based Tiny Language Model
        Hello! I'm Beeper, a small language model trained with love and care. Please be patient with me - I'm still learning! 💕
        """
    )
    
    with gr.Row():
        with gr.Column(scale=3):
            model_dropdown = gr.Dropdown(
                choices=list(MODEL_VERSIONS.keys()),
                value="Beeper v3 (Multi-Concept)",  # Default to v3 since v4 might not be ready
                label="Select Beeper Version",
                info="Choose which version of Beeper to chat with"
            )
        with gr.Column(scale=7):
            version_info = gr.Markdown("**Current:** Beeper v3 with 30+ epochs including reasoning, math, and ethics")
    
    # Update version info when dropdown changes
    def update_version_info(version_name):
        info = MODEL_VERSIONS[version_name]["description"]
        return f"**Current:** {info}"
    
    model_dropdown.change(
        fn=update_version_info,
        inputs=[model_dropdown],
        outputs=[version_info]
    )
    
    # Chat interface
    chatbot = gr.Chatbot(label="Chat with Beeper", type="tuples", height=400)
    msg = gr.Textbox(label="Message", placeholder="Type your message here...")
    
    with gr.Row():
        with gr.Column(scale=2):
            temperature_slider = gr.Slider(0.1, 1.5, value=0.9, step=0.1, label="Temperature")
        with gr.Column(scale=2):
            top_k_slider = gr.Slider(1, 100, value=40, step=1, label="Top-k")
        with gr.Column(scale=2):
            top_p_slider = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-p")
        with gr.Column(scale=2):
            max_new_tokens_slider = gr.Slider(20, 512, value=128, step=1, label="Max-new-tokens")
    
    with gr.Row():
        submit = gr.Button("Send", variant="primary")
        clear = gr.Button("Clear")
    
    # Examples
    gr.Examples(
        examples=[
            ["Hello Beeper! How are you today?"],
            ["Can you tell me a story about a robot?"],
            ["What do you like to do for fun?"],
            ["What makes you happy?"],
            ["Tell me about your dreams"],
        ],
        inputs=msg
    )
    
    # Handle chat
    def respond(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens):
        if not chat_history:
            chat_history = []
        response = beeper_reply(message, chat_history, model_version, temperature, top_k, top_p, max_new_tokens)
        chat_history.append([message, response])
        return "", chat_history
    
    msg.submit(
        respond, 
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider], 
        [msg, chatbot]
    )
    submit.click(
        respond, 
        [msg, chatbot, model_dropdown, temperature_slider, top_k_slider, top_p_slider, max_new_tokens_slider], 
        [msg, chatbot]
    )
    clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
    demo.launch() | 
