Spaces:
Runtime error
Runtime error
# model.py | |
import tensorflow as tf | |
from ultralytics import YOLO | |
import numpy as np | |
from sklearn.preprocessing import StandardScaler | |
class SuspiciousActivityModel: | |
def __init__(self, lstm_model_path, yolo_model_path): | |
# Load YOLO model | |
self.yolo_model = YOLO(yolo_model_path) | |
# Load LSTM model | |
self.lstm_model = tf.keras.models.load_model(lstm_model_path) | |
self.scaler = StandardScaler() | |
def extract_keypoints(self, frame): | |
""" | |
Extracts normalized keypoints from a frame using YOLO pose model. | |
""" | |
results = self.yolo_model(frame, verbose=False) | |
for r in results: | |
if r.keypoints is not None and len(r.keypoints) > 0: | |
keypoints = r.keypoints.xyn.tolist()[0] | |
flattened_keypoints = [kp for keypoint in keypoints for kp in keypoint[:2]] | |
return flattened_keypoints | |
return None | |
def process_frame(self, frame): | |
results = self.yolo_model(frame, verbose=False) | |
for box in results[0].boxes: | |
cls = int(box.cls[0]) # Class ID | |
confidence = float(box.conf[0]) | |
if cls == 0 and confidence > 0.5: | |
x1, y1, x2, y2 = map(int, box.xyxy[0]) | |
# Extract ROI for classification | |
roi = frame[y1:y2, x1:x2] | |
if roi.size > 0: | |
keypoints = self.extract_keypoints(roi) | |
if keypoints is not None and len(keypoints) > 0: | |
# Standardize and reshape keypoints for LSTM input | |
keypoints_scaled = self.scaler.fit_transform([keypoints]) | |
keypoints_reshaped = keypoints_scaled.reshape((1, 1, len(keypoints))) | |
# Predict with LSTM model | |
prediction = (self.lstm_model.predict(keypoints_reshaped) > 0.5).astype(int)[0][0] | |
# Return label | |
return 'Suspicious' if prediction == 1 else 'Normal' | |
return 'Normal' | |
def detect_activity(self, frame): | |
return self.process_frame(frame) | |