Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- .gitattributes +53 -53
- Dockerfile +27 -0
- README.md +8 -13
- app.py +413 -0
- report_analyzer_app.py +120 -0
- requirements.txt +13 -0
- train.py +65 -0
.gitattributes
CHANGED
@@ -1,53 +1,53 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
testimages/003f0afdcd15.png filter=lfs diff=lfs merge=lfs -text
|
37 |
-
testimages/005b95c28852.png filter=lfs diff=lfs merge=lfs -text
|
38 |
-
testimages/dyedlifted1.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
-
testimages/dyedlifted2.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
-
testimages/dyedresection1.jpg filter=lfs diff=lfs merge=lfs -text
|
41 |
-
testimages/dyedresection2.jpg filter=lfs diff=lfs merge=lfs -text
|
42 |
-
testimages/esophagitis1.jpg filter=lfs diff=lfs merge=lfs -text
|
43 |
-
testimages/esophagitis2.jpg filter=lfs diff=lfs merge=lfs -text
|
44 |
-
testimages/normalceacum1.jpg filter=lfs diff=lfs merge=lfs -text
|
45 |
-
testimages/normalceacum2.jpg filter=lfs diff=lfs merge=lfs -text
|
46 |
-
testimages/normalpylorus1.jpg filter=lfs diff=lfs merge=lfs -text
|
47 |
-
testimages/normalpylorus2.jpg filter=lfs diff=lfs merge=lfs -text
|
48 |
-
testimages/normalzline1.jpg filter=lfs diff=lfs merge=lfs -text
|
49 |
-
testimages/normalzline2.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
-
testimages/polypus1.jpg filter=lfs diff=lfs merge=lfs -text
|
51 |
-
testimages/polypus2.jpg filter=lfs diff=lfs merge=lfs -text
|
52 |
-
testimages/ulcerative1.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
-
testimages/ulcerative2.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
testimages/003f0afdcd15.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
testimages/005b95c28852.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
testimages/dyedlifted1.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
testimages/dyedlifted2.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
testimages/dyedresection1.jpg filter=lfs diff=lfs merge=lfs -text
|
41 |
+
testimages/dyedresection2.jpg filter=lfs diff=lfs merge=lfs -text
|
42 |
+
testimages/esophagitis1.jpg filter=lfs diff=lfs merge=lfs -text
|
43 |
+
testimages/esophagitis2.jpg filter=lfs diff=lfs merge=lfs -text
|
44 |
+
testimages/normalceacum1.jpg filter=lfs diff=lfs merge=lfs -text
|
45 |
+
testimages/normalceacum2.jpg filter=lfs diff=lfs merge=lfs -text
|
46 |
+
testimages/normalpylorus1.jpg filter=lfs diff=lfs merge=lfs -text
|
47 |
+
testimages/normalpylorus2.jpg filter=lfs diff=lfs merge=lfs -text
|
48 |
+
testimages/normalzline1.jpg filter=lfs diff=lfs merge=lfs -text
|
49 |
+
testimages/normalzline2.jpg filter=lfs diff=lfs merge=lfs -text
|
50 |
+
testimages/polypus1.jpg filter=lfs diff=lfs merge=lfs -text
|
51 |
+
testimages/polypus2.jpg filter=lfs diff=lfs merge=lfs -text
|
52 |
+
testimages/ulcerative1.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
+
testimages/ulcerative2.jpg filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a Python 3.10 runtime
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Install Tesseract OCR Engine and other required system dependencies
|
5 |
+
# (Keeping this in case you switch back later)
|
6 |
+
RUN apt-get update && apt-get install -y \
|
7 |
+
tesseract-ocr \
|
8 |
+
build-essential \
|
9 |
+
ffmpeg \
|
10 |
+
libsm6 \
|
11 |
+
libxext6 \
|
12 |
+
libgl1 \
|
13 |
+
libglib2.0-0 \
|
14 |
+
&& rm -rf /var/lib/apt/lists/*
|
15 |
+
|
16 |
+
# Set the working directory
|
17 |
+
WORKDIR /code
|
18 |
+
|
19 |
+
# Copy and install Python packages
|
20 |
+
COPY ./requirements.txt /code/requirements.txt
|
21 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
22 |
+
|
23 |
+
# Copy the rest of the application code
|
24 |
+
COPY . /code/
|
25 |
+
|
26 |
+
# Command to run your ORIGINAL app.py file
|
27 |
+
CMD ["gunicorn", "--bind", "0.0.0.0:7860", "app:app"]
|
README.md
CHANGED
@@ -1,13 +1,8 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
|
8 |
-
|
9 |
-
pinned: false
|
10 |
-
short_description: New Medical repository
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
metadatatitle: Medical Report Analyzer
|
3 |
+
emoji: 🩺
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
# --- FIX: Disable GPU to prevent CUDA initialization errors ---
|
3 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
4 |
+
|
5 |
+
from flask import Flask, render_template, request, jsonify, session, redirect, url_for, send_from_directory
|
6 |
+
from flask_pymongo import PyMongo
|
7 |
+
from flask_bcrypt import Bcrypt
|
8 |
+
import tensorflow as tf
|
9 |
+
from tensorflow.keras.models import load_model
|
10 |
+
from tensorflow.keras.preprocessing import image
|
11 |
+
import numpy as np
|
12 |
+
import cv2
|
13 |
+
import google.generativeai as genai
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
import certifi
|
16 |
+
import uuid
|
17 |
+
import secrets
|
18 |
+
import logging
|
19 |
+
|
20 |
+
# -------------------- Setup & Config --------------------
|
21 |
+
|
22 |
+
# Load environment variables
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
app = Flask(__name__)
|
26 |
+
|
27 |
+
# Configurations
|
28 |
+
app.config["MONGO_URI"] = os.getenv("MONGODB_URI") or os.getenv("MONGO_URI")
|
29 |
+
# Keep your format, just ensure it's set once per process
|
30 |
+
app.config['SECRET_KEY'] = os.getenv("SECRET_KEY") or secrets.token_hex(16)
|
31 |
+
|
32 |
+
# Slightly safer cookie defaults without changing your session usage
|
33 |
+
app.config.setdefault("SESSION_COOKIE_HTTPONLY", True)
|
34 |
+
app.config.setdefault("SESSION_COOKIE_SAMESITE", "Lax")
|
35 |
+
|
36 |
+
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") or os.getenv("GOOGLE_API_KEY")
|
37 |
+
|
38 |
+
# Basic logging
|
39 |
+
logging.basicConfig(level=logging.INFO)
|
40 |
+
logger = logging.getLogger("app")
|
41 |
+
|
42 |
+
# Initialize extensions
|
43 |
+
# If MONGO_URI missing, still construct PyMongo but avoid immediate use crashes
|
44 |
+
try:
|
45 |
+
if app.config["MONGO_URI"]:
|
46 |
+
mongo = PyMongo(app, tlsCAFile=certifi.where())
|
47 |
+
else:
|
48 |
+
logger.warning("MONGO_URI not set. MongoDB operations will fail.")
|
49 |
+
mongo = PyMongo(app, tlsCAFile=certifi.where())
|
50 |
+
except Exception as e:
|
51 |
+
logger.error(f"Mongo initialization error: {e}")
|
52 |
+
# Keep an object to avoid NameError later
|
53 |
+
mongo = None
|
54 |
+
|
55 |
+
bcrypt = Bcrypt(app)
|
56 |
+
|
57 |
+
# Configure Gemini
|
58 |
+
gemini_model = "gemini-2.0-flash"
|
59 |
+
if GEMINI_API_KEY:
|
60 |
+
try:
|
61 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
62 |
+
# Keep your model name
|
63 |
+
gemini_model = genai.GenerativeModel('gemini-2.0-flash')
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Gemini initialization error: {e}")
|
66 |
+
else:
|
67 |
+
logger.warning("GEMINI_API_KEY/GOOGLE_API_KEY not set. /chat will return a friendly error.")
|
68 |
+
|
69 |
+
# --- Model Configuration ---
|
70 |
+
MODEL_CONFIG = {
|
71 |
+
"Pneumonia": {
|
72 |
+
"path": "model/best_pneumonia_model.h5",
|
73 |
+
"labels": ["Normal", "Pneumonia"],
|
74 |
+
"last_conv_layer": "relu",
|
75 |
+
"input_size": (224, 224)
|
76 |
+
},
|
77 |
+
"Tuberculosis": {
|
78 |
+
"path": "model/best_tuberculosis_model.h5",
|
79 |
+
"labels": ["Normal", "Tuberculosis"],
|
80 |
+
"last_conv_layer": "relu",
|
81 |
+
"input_size": (224, 224)
|
82 |
+
},
|
83 |
+
"Brain Tumor": {
|
84 |
+
"path": "model/best_braintumor_model.h5",
|
85 |
+
"labels": ["glioma", "meningioma", "notumor", "pituitary"],
|
86 |
+
"last_conv_layer": "relu",
|
87 |
+
"input_size": (224, 224)
|
88 |
+
},
|
89 |
+
"Skin Cancer": {
|
90 |
+
"path": "model/best_skincancer_model.h5",
|
91 |
+
"labels": ["Actinic keratoses", "Basal cell carcinoma", "Benign keratosis-like lesions",
|
92 |
+
"Dermatofibroma", "Melanoma", "Melanocytic nevi", "Vascular lesions"],
|
93 |
+
"last_conv_layer": "relu",
|
94 |
+
"input_size": (224, 224)
|
95 |
+
},
|
96 |
+
"Kvasir": {
|
97 |
+
"path": "model/best_kvasir_model.h5",
|
98 |
+
"labels": ["dyed-lifted-polyps", "dyed-resection-margins", "esophagitis",
|
99 |
+
"normal-cecum", "normal-pylorus", "normal-z-line", "polyps", "ulcerative-colitis"],
|
100 |
+
"last_conv_layer": "relu",
|
101 |
+
"input_size": (224, 224)
|
102 |
+
}
|
103 |
+
}
|
104 |
+
|
105 |
+
# --- Model Loading ---
|
106 |
+
models = {}
|
107 |
+
|
108 |
+
def load_all_models():
|
109 |
+
"""Loads all models from the 'model' directory based on MODEL_CONFIG."""
|
110 |
+
for name, config in MODEL_CONFIG.items():
|
111 |
+
try:
|
112 |
+
model_path = config["path"]
|
113 |
+
if os.path.exists(model_path):
|
114 |
+
models[name] = load_model(model_path, compile=False)
|
115 |
+
logger.info(f"Successfully loaded {name} model from {model_path}.")
|
116 |
+
else:
|
117 |
+
logger.warning(f"Model file not found at {model_path}")
|
118 |
+
except Exception as e:
|
119 |
+
logger.error(f"Error loading model {name}: {e}")
|
120 |
+
|
121 |
+
# Load models on application startup
|
122 |
+
load_all_models()
|
123 |
+
|
124 |
+
# --- Image Preprocessing ---
|
125 |
+
def preprocess_image(img_path, target_size=(224, 224)):
|
126 |
+
"""Preprocesses the image for model prediction."""
|
127 |
+
img = image.load_img(img_path, target_size=target_size)
|
128 |
+
img_array = image.img_to_array(img)
|
129 |
+
# Handle grayscale or alpha automatically by broadcasting if needed
|
130 |
+
if img_array.ndim == 2:
|
131 |
+
img_array = np.stack([img_array]*3, axis=-1)
|
132 |
+
elif img_array.shape[-1] == 4:
|
133 |
+
img_array = img_array[..., :3]
|
134 |
+
img_array = np.expand_dims(img_array, axis=0)
|
135 |
+
img_array = img_array.astype("float32") / 255.0
|
136 |
+
return img_array
|
137 |
+
|
138 |
+
# --- Grad-CAM Utilities ---
|
139 |
+
def _safe_get_layer(model, layer_name):
|
140 |
+
"""Return layer if exists; else None."""
|
141 |
+
try:
|
142 |
+
return model.get_layer(layer_name)
|
143 |
+
except Exception:
|
144 |
+
return None
|
145 |
+
|
146 |
+
def find_last_conv_layer(model):
|
147 |
+
"""Finds the name of the last convolutional layer in a model."""
|
148 |
+
logger.info("--- DEBUG: Searching for last convolutional layer ---")
|
149 |
+
for layer in reversed(model.layers):
|
150 |
+
if isinstance(layer, (tf.keras.layers.Conv2D, tf.keras.layers.DepthwiseConv2D)):
|
151 |
+
# 4D output: (batch, h, w, channels)
|
152 |
+
try:
|
153 |
+
out_shape = layer.output_shape
|
154 |
+
except Exception:
|
155 |
+
out_shape = None
|
156 |
+
if out_shape and len(out_shape) == 4:
|
157 |
+
logger.info(f"Found candidate last conv layer: {layer.name}")
|
158 |
+
return layer.name
|
159 |
+
raise ValueError("Could not automatically find a convolutional layer in the model.")
|
160 |
+
|
161 |
+
def get_gradcam_heatmap(model, img_array, last_conv_layer_name, pred_index=None):
|
162 |
+
"""Generates a Grad-CAM heatmap."""
|
163 |
+
# If configured layer isn't present, auto-detect
|
164 |
+
if not _safe_get_layer(model, last_conv_layer_name):
|
165 |
+
last_conv_layer_name = find_last_conv_layer(model)
|
166 |
+
|
167 |
+
conv_layer = model.get_layer(last_conv_layer_name)
|
168 |
+
grad_model = tf.keras.models.Model(
|
169 |
+
[model.inputs], [conv_layer.output, model.output]
|
170 |
+
)
|
171 |
+
|
172 |
+
with tf.GradientTape() as tape:
|
173 |
+
conv_outputs, preds = grad_model(img_array, training=False)
|
174 |
+
|
175 |
+
if isinstance(preds, (list, tuple)):
|
176 |
+
preds = preds[0]
|
177 |
+
|
178 |
+
# Ensure preds is a tensor
|
179 |
+
preds = tf.convert_to_tensor(preds)
|
180 |
+
|
181 |
+
# If model is binary with single logit/sigmoid output
|
182 |
+
if preds.shape.rank is not None and preds.shape[-1] == 1:
|
183 |
+
class_channel = preds[:, 0]
|
184 |
+
else:
|
185 |
+
if pred_index is None:
|
186 |
+
pred_index = tf.argmax(preds[0])
|
187 |
+
class_channel = preds[:, pred_index]
|
188 |
+
|
189 |
+
grads = tape.gradient(class_channel, conv_outputs)
|
190 |
+
if grads is None:
|
191 |
+
# Fallback: no gradient (e.g., custom layers). Return uniform zeros heatmap.
|
192 |
+
heatmap = tf.zeros(conv_outputs.shape[1:3], dtype=tf.float32)
|
193 |
+
return heatmap.numpy()
|
194 |
+
|
195 |
+
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
|
196 |
+
conv_outputs = conv_outputs[0]
|
197 |
+
heatmap = tf.tensordot(conv_outputs, pooled_grads, axes=(2, 0))
|
198 |
+
|
199 |
+
heatmap = tf.maximum(heatmap, 0)
|
200 |
+
denom = tf.math.reduce_max(heatmap)
|
201 |
+
heatmap = heatmap / (denom + 1e-8)
|
202 |
+
return heatmap.numpy()
|
203 |
+
|
204 |
+
def save_gradcam_image(img_path, heatmap, output_path, threshold=0.6, alpha=0.4):
|
205 |
+
"""
|
206 |
+
Saves the Grad-CAM image by highlighting only the most important areas
|
207 |
+
with light red spots.
|
208 |
+
"""
|
209 |
+
img = cv2.imread(img_path)
|
210 |
+
if img is None:
|
211 |
+
raise ValueError("Failed to read image with OpenCV.")
|
212 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Work with RGB
|
213 |
+
|
214 |
+
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
|
215 |
+
|
216 |
+
# Create a mask where the heatmap is above the threshold
|
217 |
+
mask = heatmap > threshold
|
218 |
+
|
219 |
+
# Create a red overlay
|
220 |
+
overlay = np.zeros_like(img, dtype=np.uint8)
|
221 |
+
overlay[mask] = [255, 0, 0] # Red color for highlighted spots
|
222 |
+
|
223 |
+
# Blend the original image with the red overlay using the mask
|
224 |
+
superimposed_img = cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0)
|
225 |
+
|
226 |
+
# Areas outside the mask should be the original image
|
227 |
+
superimposed_img[~mask] = img[~mask]
|
228 |
+
|
229 |
+
superimposed_img = cv2.cvtColor(superimposed_img, cv2.COLOR_RGB2BGR)
|
230 |
+
cv2.imwrite(output_path, superimposed_img)
|
231 |
+
return output_path
|
232 |
+
|
233 |
+
# -------------------- Routes --------------------
|
234 |
+
|
235 |
+
@app.route("/")
|
236 |
+
def home():
|
237 |
+
return redirect(url_for('index'))
|
238 |
+
|
239 |
+
@app.route('/tmp/<path:filename>')
|
240 |
+
def serve_tmp_file(filename):
|
241 |
+
return send_from_directory('/tmp', filename)
|
242 |
+
|
243 |
+
@app.route('/login', methods=['GET', 'POST'])
|
244 |
+
def login():
|
245 |
+
# Authentication removed; redirect to main app
|
246 |
+
return redirect(url_for('index'))
|
247 |
+
|
248 |
+
@app.route('/signup', methods=['GET', 'POST'])
|
249 |
+
def signup():
|
250 |
+
# Authentication removed; redirect to main app
|
251 |
+
return redirect(url_for('index'))
|
252 |
+
|
253 |
+
@app.route('/index')
|
254 |
+
def index():
|
255 |
+
# Publicly accessible index
|
256 |
+
return render_template('index.html')
|
257 |
+
|
258 |
+
@app.route('/logout')
|
259 |
+
def logout():
|
260 |
+
# Authentication removed; redirect to main app
|
261 |
+
return redirect(url_for('index'))
|
262 |
+
|
263 |
+
def _postprocess_binary_prediction(raw):
|
264 |
+
"""
|
265 |
+
Normalize binary outputs across shapes:
|
266 |
+
- (1,) or (N,) : sigmoid probabilities
|
267 |
+
- (1,1) or (N,1) : sigmoid probabilities
|
268 |
+
- logits also supported (auto-sigmoid)
|
269 |
+
Returns probability in [0,1].
|
270 |
+
"""
|
271 |
+
arr = np.array(raw, dtype=np.float32)
|
272 |
+
arr = np.squeeze(arr)
|
273 |
+
# If scalar, keep it
|
274 |
+
if arr.ndim == 0:
|
275 |
+
prob = float(arr)
|
276 |
+
# Heuristic: if obviously a logit (|x|>1 and not in [0,1]), apply sigmoid
|
277 |
+
if prob < 0.0 or prob > 1.0:
|
278 |
+
prob = float(1.0 / (1.0 + np.exp(-prob)))
|
279 |
+
return min(max(prob, 0.0), 1.0)
|
280 |
+
# If 1D vector, take first
|
281 |
+
prob = float(arr[0])
|
282 |
+
if prob < 0.0 or prob > 1.0:
|
283 |
+
prob = float(1.0 / (1.0 + np.exp(-prob)))
|
284 |
+
return min(max(prob, 0.0), 1.0)
|
285 |
+
|
286 |
+
@app.route("/predict", methods=["POST"])
|
287 |
+
def predict():
|
288 |
+
if "file" not in request.files:
|
289 |
+
return jsonify({"error": "No file part"}), 400
|
290 |
+
|
291 |
+
file = request.files["file"]
|
292 |
+
model_name = request.form.get("model")
|
293 |
+
|
294 |
+
if not file or file.filename == "":
|
295 |
+
return jsonify({"error": "No selected file"}), 400
|
296 |
+
|
297 |
+
if model_name not in models:
|
298 |
+
return jsonify({"error": "Invalid model selected"}), 400
|
299 |
+
|
300 |
+
try:
|
301 |
+
filename = f"{uuid.uuid4()}_{file.filename}"
|
302 |
+
filepath = os.path.join("/tmp", filename)
|
303 |
+
file.save(filepath)
|
304 |
+
|
305 |
+
model_config = MODEL_CONFIG[model_name]
|
306 |
+
model = models[model_name]
|
307 |
+
labels = model_config["labels"]
|
308 |
+
input_size = model_config.get("input_size", (224, 224))
|
309 |
+
|
310 |
+
img_array = preprocess_image(filepath, target_size=input_size)
|
311 |
+
prediction = model.predict(img_array, verbose=0)
|
312 |
+
|
313 |
+
# Ensure numpy array
|
314 |
+
prediction = np.array(prediction)
|
315 |
+
|
316 |
+
# Binary case (2 labels) with single neuron output (logit or sigmoid)
|
317 |
+
if len(labels) == 2 and prediction.ndim >= 1 and prediction.shape[-1] in (1,) and prediction.size >= 1:
|
318 |
+
prob_pos = _postprocess_binary_prediction(prediction)
|
319 |
+
if prob_pos >= 0.5:
|
320 |
+
predicted_index = 1
|
321 |
+
predicted_label = labels[1]
|
322 |
+
confidence = prob_pos
|
323 |
+
else:
|
324 |
+
predicted_index = 0
|
325 |
+
predicted_label = labels[0]
|
326 |
+
confidence = 1.0 - prob_pos
|
327 |
+
else:
|
328 |
+
# Multi-class: softmax or logits
|
329 |
+
if prediction.ndim == 2:
|
330 |
+
vec = prediction[0]
|
331 |
+
else:
|
332 |
+
vec = prediction.reshape(-1)
|
333 |
+
# If appears to be logits, apply softmax for confidence; otherwise trust as probs
|
334 |
+
if np.any(vec < 0) or np.any(vec > 1) or not np.isclose(np.sum(vec), 1.0, atol=1e-3):
|
335 |
+
exps = np.exp(vec - np.max(vec))
|
336 |
+
probs = exps / (np.sum(exps) + 1e-8)
|
337 |
+
else:
|
338 |
+
probs = vec
|
339 |
+
predicted_index = int(np.argmax(probs))
|
340 |
+
predicted_label = labels[predicted_index]
|
341 |
+
confidence = float(np.max(probs))
|
342 |
+
|
343 |
+
gradcam_url = None
|
344 |
+
try:
|
345 |
+
logger.info(f"--- Generating Grad-CAM for model: {model_name} ---")
|
346 |
+
last_conv_layer_name = MODEL_CONFIG[model_name].get('last_conv_layer') or ""
|
347 |
+
heatmap = get_gradcam_heatmap(model, img_array, last_conv_layer_name, pred_index=predicted_index)
|
348 |
+
|
349 |
+
gradcam_filename = f"gradcam_{filename}"
|
350 |
+
gradcam_filepath = os.path.join("/tmp", gradcam_filename)
|
351 |
+
save_gradcam_image(filepath, heatmap, gradcam_filepath)
|
352 |
+
gradcam_url = url_for('serve_tmp_file', filename=gradcam_filename)
|
353 |
+
logger.info("--- Successfully generated Grad-CAM image ---")
|
354 |
+
except Exception as e:
|
355 |
+
logger.error(f"--- Grad-CAM Generation FAILED for model: {model_name} --- Error: {e}")
|
356 |
+
try:
|
357 |
+
model.summary(print_fn=lambda x: logger.info(x))
|
358 |
+
except Exception:
|
359 |
+
pass
|
360 |
+
|
361 |
+
return jsonify({
|
362 |
+
"original_image": url_for('serve_tmp_file', filename=filename),
|
363 |
+
"gradcam_image": gradcam_url,
|
364 |
+
"prediction": str(predicted_label),
|
365 |
+
"confidence": float(confidence),
|
366 |
+
"model_used": str(model_name)
|
367 |
+
})
|
368 |
+
except Exception as e:
|
369 |
+
logger.exception("Prediction error")
|
370 |
+
return jsonify({"error": str(e)}), 500
|
371 |
+
|
372 |
+
@app.route("/chat", methods=["POST"])
|
373 |
+
def chat():
|
374 |
+
data = request.get_json(silent=True) or {}
|
375 |
+
user_message = data.get("message", "")
|
376 |
+
prediction_context = data.get("context") or {}
|
377 |
+
|
378 |
+
# Guard against missing keys
|
379 |
+
model_used = prediction_context.get('model_used', 'Unknown Model')
|
380 |
+
pred_label = prediction_context.get('prediction', 'Unknown')
|
381 |
+
conf = prediction_context.get('confidence', 0.0)
|
382 |
+
try:
|
383 |
+
conf_pct = float(conf) * 100.0
|
384 |
+
except Exception:
|
385 |
+
conf_pct = 0.0
|
386 |
+
|
387 |
+
prompt = f"""
|
388 |
+
You are a helpful medical assistant chatbot.
|
389 |
+
A medical image was analyzed with the following results:
|
390 |
+
- Model Used: {model_used}
|
391 |
+
- Prediction: {pred_label}
|
392 |
+
- Confidence Score: {conf_pct:.2f}%
|
393 |
+
The user's question is: "{user_message}"
|
394 |
+
Based on this context, provide a helpful and informative response.
|
395 |
+
Do not provide a diagnosis. Advise the user to consult a medical professional.
|
396 |
+
"""
|
397 |
+
|
398 |
+
try:
|
399 |
+
if gemini_model is None:
|
400 |
+
return jsonify({"error": "Gemini API not configured. Set GEMINI_API_KEY in environment."}), 500
|
401 |
+
response = gemini_model.generate_content(prompt)
|
402 |
+
# Some SDKs return .text; guard if attribute missing
|
403 |
+
text = getattr(response, "text", None)
|
404 |
+
if not text:
|
405 |
+
# Try to stringify safely
|
406 |
+
text = str(response)
|
407 |
+
return jsonify({"response": text})
|
408 |
+
except Exception as e:
|
409 |
+
return jsonify({"error": str(e)}), 500
|
410 |
+
|
411 |
+
if __name__ == "__main__":
|
412 |
+
# Keep your debug flag as-is
|
413 |
+
app.run(debug=True)
|
report_analyzer_app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from flask import Flask, request, jsonify, render_template
|
3 |
+
from flask_pymongo import PyMongo
|
4 |
+
from flask_bcrypt import Bcrypt
|
5 |
+
import secrets
|
6 |
+
import google.generativeai as genai
|
7 |
+
import markdown
|
8 |
+
from PIL import Image
|
9 |
+
import pytesseract # For OCR
|
10 |
+
import fitz # PyMuPDF for reading PDFs
|
11 |
+
import io
|
12 |
+
|
13 |
+
# --- Basic Flask App Setup ---
|
14 |
+
app = Flask(__name__)
|
15 |
+
|
16 |
+
# --- Configurations ---
|
17 |
+
app.config['SECRET_KEY'] = os.getenv('SECRET_KEY') or secrets.token_hex(16)
|
18 |
+
app.config['MONGO_URI'] = os.getenv('MONGODB_URI') or os.getenv('MONGO_URI')
|
19 |
+
|
20 |
+
# --- Gemini API Configuration ---
|
21 |
+
GOOGLE_API_KEY = os.getenv('GEMINI_API_KEY') or os.getenv('GOOGLE_API_KEY')
|
22 |
+
try:
|
23 |
+
if GOOGLE_API_KEY:
|
24 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
25 |
+
else:
|
26 |
+
print("Warning: GEMINI_API_KEY/GOOGLE_API_KEY not set; analysis will fail until configured.")
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error configuring Gemini API: {e}\nPlease make sure the GEMINI_API_KEY or GOOGLE_API_KEY environment variable is set.")
|
29 |
+
|
30 |
+
# --- Initialize Extensions ---
|
31 |
+
mongo = PyMongo(app)
|
32 |
+
bcrypt = Bcrypt(app)
|
33 |
+
|
34 |
+
# --- User Model for Flask-Login ---
|
35 |
+
# Authentication removed: no user model or login manager
|
36 |
+
|
37 |
+
# --- Helper function for Gemini Analysis ---
|
38 |
+
def get_simplified_report(report_text):
|
39 |
+
"""Sends text to Gemini and returns a simplified, markdown-formatted report."""
|
40 |
+
if not report_text or not report_text.strip():
|
41 |
+
raise ValueError("Extracted text is empty.")
|
42 |
+
|
43 |
+
model = genai.GenerativeModel('gemini-2.0-flash')
|
44 |
+
prompt = f"""
|
45 |
+
You are an expert medical assistant. Your task is to translate the following medical report into simple, clear, and easy-to-understand language for a patient with no medical background.
|
46 |
+
|
47 |
+
Instructions:
|
48 |
+
1. Start with a one-sentence summary of the main finding.
|
49 |
+
2. Create a "Key Findings" section using bullet points.
|
50 |
+
3. For each technical term or measurement, first state the term from the report, then explain what it means in simple words and whether the result is normal, high, or low.
|
51 |
+
4. Maintain a reassuring and professional tone.
|
52 |
+
5. Conclude with a clear disclaimer: "This is a simplified summary and not a substitute for professional medical advice. Please discuss the full report with your doctor."
|
53 |
+
6. Format the entire output in Markdown.
|
54 |
+
|
55 |
+
Medical Report to Analyze:
|
56 |
+
---
|
57 |
+
{report_text}
|
58 |
+
---
|
59 |
+
"""
|
60 |
+
response = model.generate_content(prompt)
|
61 |
+
return markdown.markdown(response.text)
|
62 |
+
|
63 |
+
# --- Authentication routes removed; app is public ---
|
64 |
+
|
65 |
+
# --- Main Application Routes ---
|
66 |
+
@app.route('/')
|
67 |
+
def index():
|
68 |
+
# Publicly accessible page
|
69 |
+
return render_template('report_analyzer.html')
|
70 |
+
|
71 |
+
@app.route('/analyze_report_text', methods=['POST'])
|
72 |
+
def analyze_report_text():
|
73 |
+
"""Analyzes a report submitted as plain text."""
|
74 |
+
try:
|
75 |
+
data = request.get_json()
|
76 |
+
report_text = data.get('report_text')
|
77 |
+
if not report_text or not report_text.strip():
|
78 |
+
return jsonify({'error': 'Report text cannot be empty.'}), 400
|
79 |
+
|
80 |
+
html_response = get_simplified_report(report_text)
|
81 |
+
return jsonify({'simplified_report': html_response})
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error during text report analysis: {e}")
|
85 |
+
return jsonify({'error': 'An internal error occurred during report analysis.'}), 500
|
86 |
+
|
87 |
+
@app.route('/analyze_report_file', methods=['POST'])
|
88 |
+
def analyze_report_file():
|
89 |
+
"""Analyzes a report submitted as a PDF or Image file."""
|
90 |
+
try:
|
91 |
+
if 'report_file' not in request.files:
|
92 |
+
return jsonify({'error': 'No file part in the request.'}), 400
|
93 |
+
|
94 |
+
file = request.files['report_file']
|
95 |
+
if file.filename == '':
|
96 |
+
return jsonify({'error': 'No file selected.'}), 400
|
97 |
+
|
98 |
+
report_text = ""
|
99 |
+
# Check file extension
|
100 |
+
if file.filename.lower().endswith('.pdf'):
|
101 |
+
pdf_document = fitz.open(stream=file.read(), filetype="pdf")
|
102 |
+
for page in pdf_document:
|
103 |
+
report_text += page.get_text()
|
104 |
+
pdf_document.close()
|
105 |
+
elif file.filename.lower().endswith(('.png', '.jpg', '.jpeg')):
|
106 |
+
image = Image.open(file.stream)
|
107 |
+
report_text = pytesseract.image_to_string(image)
|
108 |
+
else:
|
109 |
+
return jsonify({'error': 'Unsupported file type. Please upload a PDF or an image.'}), 400
|
110 |
+
|
111 |
+
html_response = get_simplified_report(report_text)
|
112 |
+
return jsonify({'simplified_report': html_response})
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
print(f"Error during file report analysis: {e}")
|
116 |
+
return jsonify({'error': 'An internal error occurred during file analysis.'}), 500
|
117 |
+
|
118 |
+
# --- Run the Application ---
|
119 |
+
if __name__ == '__main__':
|
120 |
+
app.run(port=5001, debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask_pymongo
|
3 |
+
flask_bcrypt
|
4 |
+
tensorflow
|
5 |
+
numpy
|
6 |
+
opencv-python
|
7 |
+
google-generativeai
|
8 |
+
python-dotenv
|
9 |
+
Pillow
|
10 |
+
gunicorn
|
11 |
+
markdown
|
12 |
+
pytesseract
|
13 |
+
pymupdf
|
train.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
4 |
+
from tensorflow.keras.applications import MobileNetV2
|
5 |
+
from tensorflow.keras import layers, models
|
6 |
+
from tensorflow.keras.optimizers import Adam
|
7 |
+
|
8 |
+
# Updated path
|
9 |
+
base_dir = 'data/chest_xray'
|
10 |
+
train_dir = os.path.join(base_dir, 'train')
|
11 |
+
val_dir = os.path.join(base_dir, 'val')
|
12 |
+
|
13 |
+
# Parameters
|
14 |
+
IMG_SIZE = (224, 224)
|
15 |
+
BATCH_SIZE = 32
|
16 |
+
EPOCHS = 5 # You can increase later
|
17 |
+
|
18 |
+
# Data generators
|
19 |
+
train_gen = ImageDataGenerator(
|
20 |
+
rescale=1./255,
|
21 |
+
rotation_range=10,
|
22 |
+
zoom_range=0.1,
|
23 |
+
horizontal_flip=True
|
24 |
+
)
|
25 |
+
|
26 |
+
val_gen = ImageDataGenerator(rescale=1./255)
|
27 |
+
|
28 |
+
train_data = train_gen.flow_from_directory(
|
29 |
+
train_dir,
|
30 |
+
target_size=IMG_SIZE,
|
31 |
+
batch_size=BATCH_SIZE,
|
32 |
+
class_mode='binary'
|
33 |
+
)
|
34 |
+
|
35 |
+
val_data = val_gen.flow_from_directory(
|
36 |
+
val_dir,
|
37 |
+
target_size=IMG_SIZE,
|
38 |
+
batch_size=BATCH_SIZE,
|
39 |
+
class_mode='binary'
|
40 |
+
)
|
41 |
+
|
42 |
+
# MobileNetV2 base
|
43 |
+
base_model = MobileNetV2(input_shape=(224, 224, 3), include_top=False, weights='imagenet')
|
44 |
+
base_model.trainable = False
|
45 |
+
|
46 |
+
# Custom head
|
47 |
+
model = models.Sequential([
|
48 |
+
base_model,
|
49 |
+
layers.GlobalAveragePooling2D(),
|
50 |
+
layers.Dense(128, activation='relu'),
|
51 |
+
layers.Dropout(0.3),
|
52 |
+
layers.Dense(1, activation='sigmoid') # Binary classifier
|
53 |
+
])
|
54 |
+
|
55 |
+
model.compile(optimizer=Adam(learning_rate=0.0001),
|
56 |
+
loss='binary_crossentropy',
|
57 |
+
metrics=['accuracy'])
|
58 |
+
|
59 |
+
# Train
|
60 |
+
model.fit(train_data, validation_data=val_data, epochs=EPOCHS)
|
61 |
+
|
62 |
+
# Save model
|
63 |
+
os.makedirs("model", exist_ok=True)
|
64 |
+
model.save("model/pneumonia_model.h5")
|
65 |
+
print("✅ Model saved as model/pneumonia_model.h5")
|