Abs6187 commited on
Commit
1a2f286
·
verified ·
1 Parent(s): 44abec2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -90
README.md CHANGED
@@ -1,90 +1,99 @@
1
- # Combined ANPR and Helmet Detection System
2
-
3
- A comprehensive traffic violation detection system that combines Automatic Number Plate Recognition (ANPR) and Helmet Detection using YOLOv8.
4
-
5
- ## Features
6
-
7
- - Real-time license plate detection and recognition
8
- - Helmet detection for two-wheeler riders
9
- - Modern Gradio interface with real-time processing
10
- - Adjustable confidence threshold for detection
11
- - Combined visual annotations from both models
12
- - Queue support for multiple users
13
- - Comprehensive error handling
14
-
15
- ## Prerequisites
16
-
17
- - Python 3.8 or higher
18
- - CUDA-capable GPU (recommended for better performance)
19
- - 8GB RAM minimum
20
-
21
- ## Installation
22
-
23
- 1. Clone the repository:
24
- ```bash
25
- git clone <repository-url>
26
- cd <repository-name>
27
- ```
28
-
29
- 2. Create and activate a virtual environment:
30
- ```bash
31
- python -m venv venv
32
- source venv/bin/activate # On Windows: venv\Scripts\activate
33
- ```
34
-
35
- 3. Install dependencies:
36
- ```bash
37
- pip install -r requirements.txt
38
- ```
39
-
40
- ## Usage
41
-
42
- 1. Start the application:
43
- ```bash
44
- python app.py
45
- ```
46
-
47
- 2. Open your web browser and navigate to:
48
- ```
49
- http://localhost:7860
50
- ```
51
-
52
- 3. Upload an image or use the example images to test the system.
53
-
54
- ## Model Files
55
-
56
- The following model files are required:
57
- - `ANPR_IND/licence_plat.pt`: License plate detection model
58
- - `ANPR_IND/licence_character.pt`: Character recognition model
59
- - `Helmet-Detect-model/best.pt`: Helmet detection model
60
-
61
- ## API Endpoints
62
-
63
- The application exposes the following endpoints:
64
- - `/api/predict`: POST endpoint for image processing
65
- - `/api/health`: GET endpoint for health check
66
-
67
- ## Deployment
68
-
69
- ### Local Deployment
70
- ```bash
71
- python app.py
72
- ```
73
-
74
- ### Docker Deployment
75
- ```bash
76
- docker build -t traffic-detection .
77
- docker run -p 7860:7860 traffic-detection
78
- ```
79
-
80
- ## Contributing
81
-
82
- 1. Fork the repository
83
- 2. Create your feature branch
84
- 3. Commit your changes
85
- 4. Push to the branch
86
- 5. Create a new Pull Request
87
-
88
- ## License
89
-
90
- This project is licensed under the MIT License - see the LICENSE file for details.
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ title: Helmet_Detection_OCR_ANPR
4
+ sdk: gradio
5
+ emoji: 📚
6
+ colorFrom: red
7
+ colorTo: yellow
8
+ short_description: Helmet_Detection_OCR_ANPR
9
+ ---
10
+ # Combined ANPR and Helmet Detection System
11
+
12
+ A comprehensive traffic violation detection system that combines Automatic Number Plate Recognition (ANPR) and Helmet Detection using YOLOv8.
13
+
14
+ ## Features
15
+
16
+ - Real-time license plate detection and recognition
17
+ - Helmet detection for two-wheeler riders
18
+ - Modern Gradio interface with real-time processing
19
+ - Adjustable confidence threshold for detection
20
+ - Combined visual annotations from both models
21
+ - Queue support for multiple users
22
+ - Comprehensive error handling
23
+
24
+ ## Prerequisites
25
+
26
+ - Python 3.8 or higher
27
+ - CUDA-capable GPU (recommended for better performance)
28
+ - 8GB RAM minimum
29
+
30
+ ## Installation
31
+
32
+ 1. Clone the repository:
33
+ ```bash
34
+ git clone <repository-url>
35
+ cd <repository-name>
36
+ ```
37
+
38
+ 2. Create and activate a virtual environment:
39
+ ```bash
40
+ python -m venv venv
41
+ source venv/bin/activate # On Windows: venv\Scripts\activate
42
+ ```
43
+
44
+ 3. Install dependencies:
45
+ ```bash
46
+ pip install -r requirements.txt
47
+ ```
48
+
49
+ ## Usage
50
+
51
+ 1. Start the application:
52
+ ```bash
53
+ python app.py
54
+ ```
55
+
56
+ 2. Open your web browser and navigate to:
57
+ ```
58
+ http://localhost:7860
59
+ ```
60
+
61
+ 3. Upload an image or use the example images to test the system.
62
+
63
+ ## Model Files
64
+
65
+ The following model files are required:
66
+ - `ANPR_IND/licence_plat.pt`: License plate detection model
67
+ - `ANPR_IND/licence_character.pt`: Character recognition model
68
+ - `Helmet-Detect-model/best.pt`: Helmet detection model
69
+
70
+ ## API Endpoints
71
+
72
+ The application exposes the following endpoints:
73
+ - `/api/predict`: POST endpoint for image processing
74
+ - `/api/health`: GET endpoint for health check
75
+
76
+ ## Deployment
77
+
78
+ ### Local Deployment
79
+ ```bash
80
+ python app.py
81
+ ```
82
+
83
+ ### Docker Deployment
84
+ ```bash
85
+ docker build -t traffic-detection .
86
+ docker run -p 7860:7860 traffic-detection
87
+ ```
88
+
89
+ ## Contributing
90
+
91
+ 1. Fork the repository
92
+ 2. Create your feature branch
93
+ 3. Commit your changes
94
+ 4. Push to the branch
95
+ 5. Create a new Pull Request
96
+
97
+ ## License
98
+
99
+ This project is licensed under the MIT License - see the LICENSE file for details.