Abs6187's picture
Upload 13 files
44abec2 verified
raw
history blame
7.31 kB
import os
import sys
import cv2
import gradio as gr
import numpy as np
import logging
from datetime import datetime
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('app.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Add the project root to Python path
project_root = os.path.dirname(os.path.abspath(__file__))
sys.path.append(project_root)
from ANPR_IND.scripts.charExtraction import CharExtraction
from ANPR_IND.scripts.bboxAnnotator import BBOXAnnotator
from ultralytics import YOLO
# Initialize ANPR models and classes
wPathPlat = os.path.join(project_root, "ANPR_IND", "licence_plat.pt")
wPathChar = os.path.join(project_root, "ANPR_IND", "licence_character.pt")
classList = np.array(['A','B','C','D','E','F','G','H','I','J','K','L','M',
'N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
'0','1','2','3','4','5','6','7','8','9'])
sizePlat = (416,200)
# Initialize Helmet Detection model
helmet_model_path = os.path.join(project_root, "Helmet-Detect-model", "best.pt")
# Verify model files exist
required_files = [wPathPlat, wPathChar, helmet_model_path]
for file_path in required_files:
if not os.path.exists(file_path):
logger.error(f"Required model file not found: {file_path}")
raise FileNotFoundError(f"Required model file not found: {file_path}")
# Initialize models
try:
logger.info("Initializing models...")
helmet_model = YOLO(helmet_model_path)
extractor = CharExtraction(wPlatePath=wPathPlat, wCharacterPath=wPathChar,
classList=classList, sizePlate=sizePlat, conf=0.5)
annotator = BBOXAnnotator()
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
def process_image(image, conf=0.45):
start_time = datetime.now()
logger.info(f"Processing image with confidence threshold: {conf}")
if image is None:
logger.warning("No image provided")
return None, "No image provided", "No image provided"
try:
# Convert PIL Image to cv2 format if needed
if isinstance(image, str):
if not os.path.exists(image):
raise FileNotFoundError(f"Image file not found: {image}")
image = cv2.imread(image)
if image is None:
raise ValueError(f"Failed to read image: {image}")
else:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# ANPR Detection
logger.info("Running ANPR detection")
bbox, plateNum, confidence = extractor.predict(image=image, conf=conf)
anpr_image, plateNum = annotator.draw_bbox(image.copy(), bbox, plateNum)
plate_text = ", ".join(plateNum) if plateNum else "No plate detected"
logger.info(f"ANPR result: {plate_text}")
# Helmet Detection
logger.info("Running helmet detection")
results = helmet_model(image)
helmet_detected = len(results[0].boxes) > 0
helmet_status = "Helmet Detected" if helmet_detected else "No Helmet Detected"
logger.info(f"Helmet detection result: {helmet_status}")
# Get annotated image from helmet detection
helmet_image = results[0].plot()
# Combine annotations
try:
combined_image = cv2.addWeighted(anpr_image, 0.5, helmet_image, 0.5, 0)
except Exception as e:
logger.warning(f"Failed to combine annotations: {str(e)}")
combined_image = helmet_image
# Convert BGR to RGB for display
if isinstance(combined_image, np.ndarray):
combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)
processing_time = (datetime.now() - start_time).total_seconds()
logger.info(f"Processing completed in {processing_time:.2f} seconds")
return combined_image, plate_text, helmet_status
except Exception as e:
logger.error(f"Error processing image: {str(e)}")
return image, f"Error: {str(e)}", "Error processing image"
# Create example images array
example_images = [
os.path.join(project_root, "ANPR_IND", "sample_image2.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image3.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image5.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image6.jpg")
]
# Verify example images exist
for img_path in example_images:
if not os.path.exists(img_path):
logger.warning(f"Example image not found: {img_path}")
example_images.remove(img_path)
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Traffic Violation Detection System", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Combined ANPR and Helmet Detection System")
gr.Markdown("Upload an image to detect license plates and check for helmet usage.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
conf_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.45,
label="Confidence Threshold")
detect_button = gr.Button("Detect", variant="primary")
with gr.Column():
output_image = gr.Image(label="Annotated Image")
plate_output = gr.Textbox(label="License Plate")
helmet_output = gr.Textbox(label="Helmet Status")
# Set up example images
if example_images:
gr.Examples(
examples=[[img, 0.45] for img in example_images],
inputs=[input_image, conf_slider],
outputs=[output_image, plate_output, helmet_output],
fn=process_image,
cache_examples=True
)
# Set up the click event
detect_button.click(
fn=process_image,
inputs=[input_image, conf_slider],
outputs=[output_image, plate_output, helmet_output]
)
return demo
if __name__ == "__main__":
try:
logger.info("Starting application...")
demo = create_interface()
demo.queue() # Enable queue separately
# Configure FastAPI app with custom settings
demo.launch(
share=False, # Disable share link by default
server_name="127.0.0.1", # Use localhost instead of 0.0.0.0
server_port=7860,
favicon_path=None,
auth=None,
ssl_keyfile=None,
ssl_certfile=None,
ssl_verify=True,
quiet=False,
show_api=True,
root_path="",
_frontend=True,
prevent_thread_lock=False,
allowed_paths=None,
blocked_paths=None,
max_threads=40,
debug=True # Enable debug mode for better error reporting
)
except Exception as e:
logger.error(f"Failed to start application: {str(e)}")
sys.exit(1)