Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from ultralytics import YOLO | |
| from PIL import Image | |
| import os | |
| # Load the trained YOLOv8 model | |
| model = YOLO("best.pt") | |
| # Define the prediction function | |
| def predict(image): | |
| results = model(image) # Run YOLOv8 model on the uploaded image | |
| results_img = results[0].plot() # Get image with bounding boxes | |
| return Image.fromarray(results_img) | |
| # Get example images from the images folder | |
| def get_example_images(): | |
| examples = [] | |
| image_folder = "images" | |
| for filename in os.listdir(image_folder): | |
| if filename.lower().endswith(('.png', '.jpg', '.jpeg')): | |
| examples.append(os.path.join(image_folder, filename)) | |
| return examples | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Image(type="pil"), | |
| title="Helmet Detection with YOLO", | |
| description="Upload an image to detect helmets.", | |
| examples=get_example_images() | |
| ) | |
| # Launch the interface | |
| interface.launch(share=True) |