File size: 6,664 Bytes
44abec2
 
 
 
 
 
 
 
 
e66d73b
44abec2
ef60eb5
 
 
 
 
 
44abec2
ef60eb5
44abec2
ef60eb5
 
44abec2
 
ef60eb5
44abec2
 
 
 
ef60eb5
44abec2
 
ef60eb5
 
 
 
 
 
44abec2
ef60eb5
44abec2
 
ef60eb5
44abec2
 
ef60eb5
 
 
44abec2
ef60eb5
44abec2
ef60eb5
 
 
 
 
 
 
 
 
 
 
44abec2
ef60eb5
 
44abec2
 
ef60eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44abec2
ef60eb5
 
 
 
 
 
 
44abec2
ef60eb5
 
 
 
44abec2
ef60eb5
44abec2
ef60eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44abec2
ef60eb5
 
 
 
44abec2
 
ef60eb5
 
 
 
 
44abec2
 
ef60eb5
 
 
 
 
 
 
 
 
 
 
 
 
44abec2
ef60eb5
 
 
 
 
 
 
 
 
 
44abec2
ef60eb5
 
 
44abec2
 
ef60eb5
 
 
 
 
 
44abec2
ef60eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import sys
import cv2
import gradio as gr
import numpy as np
import logging
from datetime import datetime
from pathlib import Path

#Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('app.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(name)

#Add the project root to Python path
project_root = os.path.dirname(os.path.abspath(file))
sys.path.append(project_root)

#Import custom modules and models
from ANPR_IND.scripts.charExtraction import CharExtraction
from ANPR_IND.scripts.bboxAnnotator import BBOXAnnotator
from ultralytics import YOLO

#Initialize ANPR models and classes
wPathPlat = os.path.join(project_root, "ANPR_IND", "licence_plat.pt")
wPathChar = os.path.join(project_root, "ANPR_IND", "licence_character.pt")
classList = np.array([
'A','B','C','D','E','F','G','H','I','J','K','L','M',
'N','O','P','Q','R','S','T','U','V','W','X','Y','Z',
'0','1','2','3','4','5','6','7','8','9'
])
sizePlat = (416, 200)

#Initialize Helmet Detection model path
helmet_model_path = os.path.join(project_root, "Helmet-Detect-model", "best.pt")

#Verify that the required model files exist
required_files = [wPathPlat, wPathChar, helmet_model_path]
for file_path in required_files:
if not os.path.exists(file_path):
logger.error(f"Required model file not found: {file_path}")
raise FileNotFoundError(f"Required model file not found: {file_path}")

#Initialize models
try:
logger.info("Initializing models...")
helmet_model = YOLO(helmet_model_path)
extractor = CharExtraction(
wPlatePath=wPathPlat,
wCharacterPath=wPathChar,
classList=classList,
sizePlate=sizePlat,
conf=0.5
)
annotator = BBOXAnnotator()
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise

def process_image(image, conf=0.45):
start_time = datetime.now()
logger.info(f"Processing image with confidence threshold: {conf}")

text
if image is None:
    logger.warning("No image provided")
    return None, "No image provided", "No image provided"

try:
    # Convert PIL Image to OpenCV BGR format if necessary
    if isinstance(image, str):
        if not os.path.exists(image):
            raise FileNotFoundError(f"Image file not found: {image}")
        image = cv2.imread(image)
        if image is None:
            raise ValueError("Failed to read image from the provided path.")
    else:
        image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    
    # Run ANPR detection
    logger.info("Running ANPR detection")
    bbox, plateNum, confidence = extractor.predict(image=image, conf=conf)
    anpr_image, plateNum = annotator.draw_bbox(image.copy(), bbox, plateNum)
    plate_text = ", ".join(plateNum) if plateNum else "No plate detected"
    logger.info(f"ANPR result: {plate_text}")
    
    # Run Helmet detection
    logger.info("Running helmet detection")
    results = helmet_model(image)
    # Ensure accessing the correct results container; the first element usually holds the detection info
    helmet_detected = len(results.boxes) > 0
    helmet_status = "Helmet Detected" if helmet_detected else "No Helmet Detected"
    logger.info(f"Helmet detection result: {helmet_status}")
    
    # Retrieve annotated image from helmet detection
    helmet_image = results.plot()
    
    # Combine annotations from both detections
    try:
        combined_image = cv2.addWeighted(anpr_image, 0.5, helmet_image, 0.5, 0)
    except Exception as e:
        logger.warning(f"Failed to combine annotations: {str(e)}")
        combined_image = helmet_image
    
    # Convert image from BGR to RGB for proper display in Gradio
    if isinstance(combined_image, np.ndarray):
        combined_image = cv2.cvtColor(combined_image, cv2.COLOR_BGR2RGB)
    
    processing_time = (datetime.now() - start_time).total_seconds()
    logger.info(f"Processing completed in {processing_time:.2f} seconds")
    
    return combined_image, plate_text, helmet_status
    
except Exception as e:
    logger.error(f"Error processing image: {str(e)}")
    return image, f"Error: {str(e)}", "Error processing image"
#Create an array of example image paths
example_images = [
os.path.join(project_root, "ANPR_IND", "sample_image2.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image3.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image5.jpg"),
os.path.join(project_root, "ANPR_IND", "sample_image6.jpg")
]

#Verify example images exist, and remove any that aren't found
for img_path in example_images.copy():
if not os.path.exists(img_path):
logger.warning(f"Example image not found: {img_path}")
example_images.remove(img_path)

def create_interface():
with gr.Blocks(title="Traffic Violation Detection System", theme=gr.themes.Soft()) as demo:
gr.Markdown("# Combined ANPR and Helmet Detection System")
gr.Markdown("Upload an image to detect license plates and check for helmet usage.")

text
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input Image", type="pil")
            conf_slider = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.45, 
                label="Confidence Threshold"
            )
            detect_button = gr.Button("Detect", variant="primary")
        with gr.Column():
            output_image = gr.Image(label="Annotated Image")
            plate_output = gr.Textbox(label="License Plate")
            helmet_output = gr.Textbox(label="Helmet Status")
    
    # Configure example images if available
    if example_images:
        gr.Examples(
            examples=[[img, 0.45] for img in example_images],
            inputs=[input_image, conf_slider],
            outputs=[output_image, plate_output, helmet_output],
            fn=process_image,
            cache_examples=True
        )
    
    # Set up the click event to trigger detection
    detect_button.click(
        fn=process_image,
        inputs=[input_image, conf_slider],
        outputs=[output_image, plate_output, helmet_output]
    )

return demo
if name == "main":
try:
logger.info("Starting application...")
demo = create_interface()
demo.queue() # Enable request queuing if your tasks are long-running

text
    # Launch application on Hugging Face Spaces
    # - Use server_name="0.0.0.0" to allow external connections.
    # - Do not include share=True (Spaces already provides your public URL).
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        debug=True
    )
except Exception as e:
    logger.error(f"Failed to start application: {str(e)}")
    sys.exit(1)