Create advanced_ocr.py
Browse files- advanced_ocr.py +368 -0
advanced_ocr.py
ADDED
|
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, pipeline
|
| 3 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import re
|
| 7 |
+
import os
|
| 8 |
+
from typing import Dict, List, Optional, Union
|
| 9 |
+
import requests
|
| 10 |
+
from io import BytesIO
|
| 11 |
+
|
| 12 |
+
class AdvancedLicensePlateOCR:
|
| 13 |
+
def __init__(self):
|
| 14 |
+
self.models = {
|
| 15 |
+
"trocr_license": {
|
| 16 |
+
"name": "TrOCR License Plates (Recommended)",
|
| 17 |
+
"model_id": "DunnBC22/trocr-base-printed_license_plates_ocr",
|
| 18 |
+
"type": "transformers",
|
| 19 |
+
"processor": None,
|
| 20 |
+
"model": None,
|
| 21 |
+
"loaded": False,
|
| 22 |
+
"description": "Specialized TrOCR model trained on license plates"
|
| 23 |
+
},
|
| 24 |
+
"detr_license": {
|
| 25 |
+
"name": "DETR License Plate Detection + OCR",
|
| 26 |
+
"model_id": "nickmuchi/detr-resnet50-license-plate-detection",
|
| 27 |
+
"type": "object_detection",
|
| 28 |
+
"processor": None,
|
| 29 |
+
"model": None,
|
| 30 |
+
"loaded": False,
|
| 31 |
+
"description": "End-to-end detection and recognition"
|
| 32 |
+
},
|
| 33 |
+
"yolo_license": {
|
| 34 |
+
"name": "YOLO License Plate (Fast)",
|
| 35 |
+
"model_id": "keremberke/yolov5n-license-plate",
|
| 36 |
+
"type": "yolo",
|
| 37 |
+
"processor": None,
|
| 38 |
+
"model": None,
|
| 39 |
+
"loaded": False,
|
| 40 |
+
"description": "Fast YOLO-based license plate detection"
|
| 41 |
+
},
|
| 42 |
+
"trocr_base": {
|
| 43 |
+
"name": "TrOCR Base (General)",
|
| 44 |
+
"model_id": "microsoft/trocr-base-printed",
|
| 45 |
+
"type": "transformers",
|
| 46 |
+
"processor": None,
|
| 47 |
+
"model": None,
|
| 48 |
+
"loaded": False,
|
| 49 |
+
"description": "General purpose OCR model"
|
| 50 |
+
},
|
| 51 |
+
"easyocr": {
|
| 52 |
+
"name": "EasyOCR (Fallback)",
|
| 53 |
+
"model_id": "easyocr",
|
| 54 |
+
"type": "easyocr",
|
| 55 |
+
"processor": None,
|
| 56 |
+
"model": None,
|
| 57 |
+
"loaded": False,
|
| 58 |
+
"description": "Traditional OCR approach"
|
| 59 |
+
}
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
self.current_model = "trocr_license"
|
| 63 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 64 |
+
|
| 65 |
+
def list_available_models(self) -> Dict[str, Dict]:
|
| 66 |
+
return {
|
| 67 |
+
key: {
|
| 68 |
+
"name": model["name"],
|
| 69 |
+
"description": model["description"],
|
| 70 |
+
"type": model["type"],
|
| 71 |
+
"loaded": model["loaded"]
|
| 72 |
+
}
|
| 73 |
+
for key, model in self.models.items()
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
def load_model(self, model_key: str) -> bool:
|
| 77 |
+
if model_key not in self.models:
|
| 78 |
+
print(f"Model {model_key} not found")
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
model_info = self.models[model_key]
|
| 82 |
+
|
| 83 |
+
if model_info["loaded"]:
|
| 84 |
+
print(f"Model {model_info['name']} already loaded")
|
| 85 |
+
return True
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
print(f"Loading {model_info['name']}...")
|
| 89 |
+
|
| 90 |
+
if model_info["type"] == "transformers":
|
| 91 |
+
model_info["processor"] = AutoProcessor.from_pretrained(model_info["model_id"])
|
| 92 |
+
model_info["model"] = AutoModelForVision2Seq.from_pretrained(model_info["model_id"])
|
| 93 |
+
model_info["model"].to(self.device)
|
| 94 |
+
|
| 95 |
+
elif model_info["type"] == "object_detection":
|
| 96 |
+
try:
|
| 97 |
+
model_info["model"] = pipeline(
|
| 98 |
+
"object-detection",
|
| 99 |
+
model=model_info["model_id"],
|
| 100 |
+
device=0 if torch.cuda.is_available() else -1
|
| 101 |
+
)
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"Failed to load as pipeline, trying alternative: {e}")
|
| 104 |
+
model_info["processor"] = AutoProcessor.from_pretrained(model_info["model_id"])
|
| 105 |
+
model_info["model"] = AutoModelForVision2Seq.from_pretrained(model_info["model_id"])
|
| 106 |
+
model_info["model"].to(self.device)
|
| 107 |
+
|
| 108 |
+
elif model_info["type"] == "yolo":
|
| 109 |
+
try:
|
| 110 |
+
from ultralytics import YOLO
|
| 111 |
+
model_info["model"] = YOLO(model_info["model_id"])
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"YOLO model loading failed: {e}")
|
| 114 |
+
return False
|
| 115 |
+
|
| 116 |
+
elif model_info["type"] == "easyocr":
|
| 117 |
+
try:
|
| 118 |
+
import easyocr
|
| 119 |
+
model_info["model"] = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"EasyOCR loading failed: {e}")
|
| 122 |
+
return False
|
| 123 |
+
|
| 124 |
+
model_info["loaded"] = True
|
| 125 |
+
self.current_model = model_key
|
| 126 |
+
print(f"✅ Successfully loaded {model_info['name']}")
|
| 127 |
+
return True
|
| 128 |
+
|
| 129 |
+
except Exception as e:
|
| 130 |
+
print(f"❌ Failed to load {model_info['name']}: {e}")
|
| 131 |
+
return False
|
| 132 |
+
|
| 133 |
+
def preprocess_image_advanced(self, image: Image.Image) -> List[Image.Image]:
|
| 134 |
+
variants = []
|
| 135 |
+
|
| 136 |
+
try:
|
| 137 |
+
original = image.copy()
|
| 138 |
+
variants.append(original)
|
| 139 |
+
|
| 140 |
+
if image.mode != 'RGB':
|
| 141 |
+
image = image.convert('RGB')
|
| 142 |
+
|
| 143 |
+
enhancer = ImageEnhance.Contrast(image)
|
| 144 |
+
high_contrast = enhancer.enhance(2.5)
|
| 145 |
+
variants.append(high_contrast)
|
| 146 |
+
|
| 147 |
+
sharpened = high_contrast.filter(ImageFilter.SHARPEN)
|
| 148 |
+
variants.append(sharpened)
|
| 149 |
+
|
| 150 |
+
img_array = np.array(image)
|
| 151 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 152 |
+
|
| 153 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
| 154 |
+
clahe_img = clahe.apply(gray)
|
| 155 |
+
clahe_pil = Image.fromarray(clahe_img).convert('RGB')
|
| 156 |
+
variants.append(clahe_pil)
|
| 157 |
+
|
| 158 |
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 159 |
+
binary_pil = Image.fromarray(binary).convert('RGB')
|
| 160 |
+
variants.append(binary_pil)
|
| 161 |
+
|
| 162 |
+
denoised = cv2.bilateralFilter(gray, 9, 75, 75)
|
| 163 |
+
denoised_pil = Image.fromarray(denoised).convert('RGB')
|
| 164 |
+
variants.append(denoised_pil)
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
print(f"Preprocessing error: {e}")
|
| 168 |
+
variants = [image]
|
| 169 |
+
|
| 170 |
+
return variants
|
| 171 |
+
|
| 172 |
+
def extract_with_trocr(self, image: Image.Image, model_key: str) -> str:
|
| 173 |
+
model_info = self.models[model_key]
|
| 174 |
+
|
| 175 |
+
if not model_info["loaded"]:
|
| 176 |
+
if not self.load_model(model_key):
|
| 177 |
+
return "Model loading failed"
|
| 178 |
+
|
| 179 |
+
try:
|
| 180 |
+
processor = model_info["processor"]
|
| 181 |
+
model = model_info["model"]
|
| 182 |
+
|
| 183 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 184 |
+
pixel_values = pixel_values.to(self.device)
|
| 185 |
+
|
| 186 |
+
with torch.no_grad():
|
| 187 |
+
generated_ids = model.generate(pixel_values, max_length=50)
|
| 188 |
+
|
| 189 |
+
text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 190 |
+
return text.strip()
|
| 191 |
+
|
| 192 |
+
except Exception as e:
|
| 193 |
+
print(f"TrOCR extraction error: {e}")
|
| 194 |
+
return f"TrOCR Error: {str(e)}"
|
| 195 |
+
|
| 196 |
+
def extract_with_easyocr(self, image: Image.Image) -> str:
|
| 197 |
+
model_info = self.models["easyocr"]
|
| 198 |
+
|
| 199 |
+
if not model_info["loaded"]:
|
| 200 |
+
if not self.load_model("easyocr"):
|
| 201 |
+
return "EasyOCR loading failed"
|
| 202 |
+
|
| 203 |
+
try:
|
| 204 |
+
reader = model_info["model"]
|
| 205 |
+
img_array = np.array(image)
|
| 206 |
+
results = reader.readtext(img_array, detail=False, paragraph=False)
|
| 207 |
+
|
| 208 |
+
if results:
|
| 209 |
+
return ' '.join(results).strip()
|
| 210 |
+
return "No text detected"
|
| 211 |
+
|
| 212 |
+
except Exception as e:
|
| 213 |
+
print(f"EasyOCR extraction error: {e}")
|
| 214 |
+
return f"EasyOCR Error: {str(e)}"
|
| 215 |
+
|
| 216 |
+
def extract_with_detr(self, image: Image.Image) -> str:
|
| 217 |
+
model_info = self.models["detr_license"]
|
| 218 |
+
|
| 219 |
+
if not model_info["loaded"]:
|
| 220 |
+
if not self.load_model("detr_license"):
|
| 221 |
+
return "DETR model loading failed"
|
| 222 |
+
|
| 223 |
+
try:
|
| 224 |
+
if hasattr(model_info["model"], '__call__'):
|
| 225 |
+
results = model_info["model"](image)
|
| 226 |
+
if results and len(results) > 0:
|
| 227 |
+
return f"Detected {len(results)} objects"
|
| 228 |
+
else:
|
| 229 |
+
return self.extract_with_trocr(image, "detr_license")
|
| 230 |
+
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"DETR extraction error: {e}")
|
| 233 |
+
return f"DETR Error: {str(e)}"
|
| 234 |
+
|
| 235 |
+
def clean_license_text(self, text: str) -> str:
|
| 236 |
+
if not text or text.startswith(("Error:", "Failed")):
|
| 237 |
+
return text
|
| 238 |
+
|
| 239 |
+
text = text.upper().strip()
|
| 240 |
+
text = re.sub(r'[^A-Z0-9\s-]', '', text)
|
| 241 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 242 |
+
|
| 243 |
+
common_corrections = {
|
| 244 |
+
'O': '0', 'I': '1', 'S': '5', 'B': '8', 'G': '6', 'Z': '2'
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
for old, new in common_corrections.items():
|
| 248 |
+
if sum(c.isdigit() for c in text) > sum(c.isalpha() for c in text):
|
| 249 |
+
text = text.replace(old, new)
|
| 250 |
+
|
| 251 |
+
return text
|
| 252 |
+
|
| 253 |
+
def extract_text_with_model(self, image: Union[Image.Image, str],
|
| 254 |
+
model_key: Optional[str] = None,
|
| 255 |
+
use_preprocessing: bool = True) -> Dict:
|
| 256 |
+
|
| 257 |
+
if isinstance(image, str):
|
| 258 |
+
if os.path.exists(image):
|
| 259 |
+
image = Image.open(image)
|
| 260 |
+
else:
|
| 261 |
+
return {"error": f"Image file not found: {image}"}
|
| 262 |
+
|
| 263 |
+
if model_key is None:
|
| 264 |
+
model_key = self.current_model
|
| 265 |
+
|
| 266 |
+
if model_key not in self.models:
|
| 267 |
+
return {"error": f"Unknown model: {model_key}"}
|
| 268 |
+
|
| 269 |
+
result = {
|
| 270 |
+
"model_used": self.models[model_key]["name"],
|
| 271 |
+
"model_key": model_key,
|
| 272 |
+
"preprocessing": use_preprocessing,
|
| 273 |
+
"extractions": [],
|
| 274 |
+
"best_result": "",
|
| 275 |
+
"confidence": 0.0
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
try:
|
| 279 |
+
images_to_process = self.preprocess_image_advanced(image) if use_preprocessing else [image]
|
| 280 |
+
|
| 281 |
+
for i, processed_img in enumerate(images_to_process):
|
| 282 |
+
try:
|
| 283 |
+
if self.models[model_key]["type"] == "transformers":
|
| 284 |
+
raw_text = self.extract_with_trocr(processed_img, model_key)
|
| 285 |
+
elif self.models[model_key]["type"] == "object_detection":
|
| 286 |
+
raw_text = self.extract_with_detr(processed_img)
|
| 287 |
+
elif self.models[model_key]["type"] == "easyocr":
|
| 288 |
+
raw_text = self.extract_with_easyocr(processed_img)
|
| 289 |
+
else:
|
| 290 |
+
raw_text = "Unsupported model type"
|
| 291 |
+
|
| 292 |
+
cleaned_text = self.clean_license_text(raw_text)
|
| 293 |
+
|
| 294 |
+
extraction = {
|
| 295 |
+
"step": i,
|
| 296 |
+
"raw_text": raw_text,
|
| 297 |
+
"cleaned_text": cleaned_text,
|
| 298 |
+
"length": len(cleaned_text) if cleaned_text else 0
|
| 299 |
+
}
|
| 300 |
+
|
| 301 |
+
result["extractions"].append(extraction)
|
| 302 |
+
|
| 303 |
+
if cleaned_text and not cleaned_text.startswith(("Error:", "Failed")):
|
| 304 |
+
if len(cleaned_text) > len(result["best_result"]):
|
| 305 |
+
result["best_result"] = cleaned_text
|
| 306 |
+
result["confidence"] = 0.8 + (len(cleaned_text) * 0.02)
|
| 307 |
+
|
| 308 |
+
except Exception as e:
|
| 309 |
+
print(f"Error processing image variant {i}: {e}")
|
| 310 |
+
continue
|
| 311 |
+
|
| 312 |
+
if not result["best_result"]:
|
| 313 |
+
if result["extractions"]:
|
| 314 |
+
result["best_result"] = result["extractions"][0].get("raw_text", "No text found")
|
| 315 |
+
result["confidence"] = 0.3
|
| 316 |
+
else:
|
| 317 |
+
result["best_result"] = "No text extracted"
|
| 318 |
+
result["confidence"] = 0.0
|
| 319 |
+
|
| 320 |
+
return result
|
| 321 |
+
|
| 322 |
+
except Exception as e:
|
| 323 |
+
return {"error": f"Extraction failed: {str(e)}"}
|
| 324 |
+
|
| 325 |
+
advanced_ocr = AdvancedLicensePlateOCR()
|
| 326 |
+
|
| 327 |
+
def get_available_models():
|
| 328 |
+
return advanced_ocr.list_available_models()
|
| 329 |
+
|
| 330 |
+
def set_ocr_model(model_key: str) -> bool:
|
| 331 |
+
return advanced_ocr.load_model(model_key)
|
| 332 |
+
|
| 333 |
+
def extract_license_plate_text_advanced(image: Union[Image.Image, str],
|
| 334 |
+
model_key: Optional[str] = None) -> str:
|
| 335 |
+
try:
|
| 336 |
+
result = advanced_ocr.extract_text_with_model(image, model_key)
|
| 337 |
+
|
| 338 |
+
if "error" in result:
|
| 339 |
+
return f"Error: {result['error']}"
|
| 340 |
+
|
| 341 |
+
return result.get("best_result", "No text found")
|
| 342 |
+
|
| 343 |
+
except Exception as e:
|
| 344 |
+
return f"Error: {str(e)}"
|
| 345 |
+
|
| 346 |
+
def get_detailed_analysis(image: Union[Image.Image, str],
|
| 347 |
+
model_key: Optional[str] = None) -> Dict:
|
| 348 |
+
return advanced_ocr.extract_text_with_model(image, model_key)
|
| 349 |
+
|
| 350 |
+
if __name__ == "__main__":
|
| 351 |
+
print("Advanced License Plate OCR System")
|
| 352 |
+
print("=" * 40)
|
| 353 |
+
|
| 354 |
+
models = get_available_models()
|
| 355 |
+
print("Available models:")
|
| 356 |
+
for key, info in models.items():
|
| 357 |
+
status = "✅" if info["loaded"] else "⚪"
|
| 358 |
+
print(f"{status} {key}: {info['name']} - {info['description']}")
|
| 359 |
+
|
| 360 |
+
print("\nRecommended models (in order):")
|
| 361 |
+
print("1. trocr_license - Best for license plates")
|
| 362 |
+
print("2. detr_license - End-to-end detection")
|
| 363 |
+
print("3. easyocr - Reliable fallback")
|
| 364 |
+
|
| 365 |
+
print("\nUsage:")
|
| 366 |
+
print("from advanced_ocr import extract_license_plate_text_advanced, set_ocr_model")
|
| 367 |
+
print("set_ocr_model('trocr_license')")
|
| 368 |
+
print("text = extract_license_plate_text_advanced('license_plate.jpg')")
|