import spaces import gradio as gr import torch from transformers import pipeline from PIL import Image import time import traceback # Global model storage for Zero GPU compatibility models = {} @spaces.GPU(duration=300) def load_model_on_gpu(model_choice): """Load GLM model on GPU - separated for clarity.""" model_map = { "GLM-4.5V-AWQ": "QuantTrio/GLM-4.5V-AWQ", "GLM-4.5V-FP8": "zai-org/GLM-4.5V-FP8", "GLM-4.5V": "zai-org/GLM-4.5V" } model_name = model_map.get(model_choice) if not model_name: return False, f"Unknown model: {model_choice}" if model_name in models: return True, f"โœ… {model_choice} already loaded" try: pipe = pipeline( "image-text-to-text", model=model_name, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True ) models[model_name] = pipe return True, f"โœ… {model_choice} loaded successfully" except Exception as e: return False, f"โŒ Failed to load {model_choice}: {str(e)[:200]}" @spaces.GPU(duration=120) def generate_code(image, model_choice, prompt_style): """Generate CADQuery code - main GPU function.""" if image is None: return "โŒ Please upload an image first." # Create prompts prompts = { "Simple": "Generate CADQuery Python code for this 3D model:", "Detailed": "Analyze this 3D CAD model and generate Python CADQuery code.\n\nRequirements:\n- Import cadquery as cq\n- Store result in 'result' variable\n- Use proper CADQuery syntax\n\nCode:", "Chain-of-Thought": "Analyze this 3D CAD model step by step:\n\nStep 1: Identify the basic geometry\nStep 2: Note any features\nStep 3: Generate clean CADQuery Python code\n\n```python\nimport cadquery as cq\n\n# Generated code:" } try: # Load model if needed model_map = { "GLM-4.5V-AWQ": "QuantTrio/GLM-4.5V-AWQ", "GLM-4.5V-FP8": "zai-org/GLM-4.5V-FP8", "GLM-4.5V": "zai-org/GLM-4.5V" } model_name = model_map[model_choice] if model_name not in models: pipe = pipeline( "image-text-to-text", model=model_name, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True ) models[model_name] = pipe else: pipe = models[model_name] # Generate messages = [{ "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": prompts[prompt_style]} ] }] result = pipe(messages, max_new_tokens=512, temperature=0.7) if isinstance(result, list) and len(result) > 0: generated_text = result[0].get("generated_text", str(result)) else: generated_text = str(result) # Simple code extraction code = generated_text.strip() if "```python" in code: start = code.find("```python") + 9 end = code.find("```", start) if end > start: code = code[start:end].strip() if "import cadquery" not in code: code = "import cadquery as cq\n\n" + code return f"""## ๐ŸŽฏ Generated CADQuery Code ```python {code} ``` ## ๐Ÿ“Š Info - **Model**: {model_choice} - **Prompt**: {prompt_style} - **Device**: {"GPU" if torch.cuda.is_available() else "CPU"} ## ๐Ÿ”ง Usage ```bash pip install cadquery python your_script.py ``` """ except Exception as e: return f"โŒ **Generation Failed**: {str(e)[:500]}" def test_model(model_choice): """Test model loading.""" success, message = load_model_on_gpu(model_choice) return f"## Test Result\n\n{message}" def system_info(): """Get system info.""" info = f"""## ๐Ÿ–ฅ๏ธ System Information - **CUDA Available**: {torch.cuda.is_available()} - **CUDA Devices**: {torch.cuda.device_count() if torch.cuda.is_available() else 0} - **PyTorch Version**: {torch.__version__} - **Device**: {"GPU" if torch.cuda.is_available() else "CPU"} """ return info # Create interface with gr.Blocks(title="GLM-4.5V CAD Generator", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # ๐Ÿ”ง GLM-4.5V CAD Generator Generate CADQuery Python code from 3D CAD model images using GLM-4.5V models! **Models**: GLM-4.5V-AWQ (fastest) | GLM-4.5V-FP8 (balanced) | GLM-4.5V (best quality) """) with gr.Tab("๐Ÿš€ Generate"): with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil", label="Upload CAD Model Image") model_choice = gr.Dropdown( choices=["GLM-4.5V-AWQ", "GLM-4.5V-FP8", "GLM-4.5V"], value="GLM-4.5V-AWQ", label="Select Model" ) prompt_style = gr.Dropdown( choices=["Simple", "Detailed", "Chain-of-Thought"], value="Chain-of-Thought", label="Prompt Style" ) generate_btn = gr.Button("๐Ÿš€ Generate CADQuery Code", variant="primary") with gr.Column(): output = gr.Markdown("Upload an image and click Generate!") generate_btn.click( fn=generate_code, inputs=[image_input, model_choice, prompt_style], outputs=output ) with gr.Tab("๐Ÿงช Test"): with gr.Row(): with gr.Column(): test_model_choice = gr.Dropdown( choices=["GLM-4.5V-AWQ", "GLM-4.5V-FP8", "GLM-4.5V"], value="GLM-4.5V-AWQ", label="Model to Test" ) test_btn = gr.Button("๐Ÿงช Test Model") with gr.Column(): test_output = gr.Markdown("Click Test Model to check loading.") test_btn.click(fn=test_model, inputs=test_model_choice, outputs=test_output) with gr.Tab("โš™๏ธ System"): info_display = gr.Markdown() refresh_btn = gr.Button("๐Ÿ”„ Refresh") demo.load(fn=system_info, outputs=info_display) refresh_btn.click(fn=system_info, outputs=info_display) if __name__ == "__main__": print("๐Ÿš€ Starting GLM-4.5V CAD Generator...") print(f"CUDA available: {torch.cuda.is_available()}") demo.launch(share=True, show_error=True)