"""Image parser. Contains parsers for image files. """ import re from pathlib import Path from typing import Dict from gpt_index.readers.file.base_parser import BaseParser class ImageParser(BaseParser): """Image parser. Extract text from images using DONUT. """ def _init_parser(self) -> Dict: """Init parser.""" try: import torch # noqa: F401 except ImportError: raise ImportError( "install pytorch to use the model: " "`pip install torch`" ) try: from transformers import DonutProcessor, VisionEncoderDecoderModel except ImportError: raise ImportError( "transformers is required for using DONUT model: " "`pip install transformers`" ) try: import sentencepiece # noqa: F401 except ImportError: raise ImportError( "sentencepiece is required for using DONUT model: " "`pip install sentencepiece`" ) try: from PIL import Image # noqa: F401 except ImportError: raise ImportError( "PIL is required to read image files: " "`pip install Pillow`" ) processor = DonutProcessor.from_pretrained( "naver-clova-ix/donut-base-finetuned-cord-v2" ) model = VisionEncoderDecoderModel.from_pretrained( "naver-clova-ix/donut-base-finetuned-cord-v2" ) return {"processor": processor, "model": model} def parse_file(self, file: Path, errors: str = "ignore") -> str: """Parse file.""" import torch from PIL import Image model = self.parser_config["model"] processor = self.parser_config["processor"] device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # load document image image = Image.open(file) if image.mode != "RGB": image = image.convert("RGB") # prepare decoder inputs task_prompt = "" decoder_input_ids = processor.tokenizer( task_prompt, add_special_tokens=False, return_tensors="pt" ).input_ids pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=3, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( processor.tokenizer.pad_token, "" ) # remove first task start token sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() return sequence