"""Keyword-table based index. Similar to a "hash table" in concept. LlamaIndex first tries to extract keywords from the source text, and stores the keywords as keys per item. It similarly extracts keywords from the query text. Then, it tries to match those keywords to existing keywords in the table. """ from abc import abstractmethod from typing import Any, Dict, Optional, Sequence, Set, Type from gpt_index.async_utils import run_async_tasks from gpt_index.data_structs.data_structs import KeywordTable from gpt_index.indices.base import DOCUMENTS_INPUT, BaseGPTIndex from gpt_index.indices.keyword_table.utils import extract_keywords_given_response from gpt_index.indices.query.base import BaseGPTIndexQuery from gpt_index.indices.query.keyword_table.query import ( GPTKeywordTableGPTQuery, GPTKeywordTableRAKEQuery, GPTKeywordTableSimpleQuery, ) from gpt_index.indices.query.schema import QueryMode from gpt_index.langchain_helpers.chain_wrapper import LLMPredictor from gpt_index.langchain_helpers.text_splitter import TextSplitter from gpt_index.prompts.default_prompts import ( DEFAULT_KEYWORD_EXTRACT_TEMPLATE, DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE, ) from gpt_index.prompts.prompts import KeywordExtractPrompt from gpt_index.schema import BaseDocument DQKET = DEFAULT_QUERY_KEYWORD_EXTRACT_TEMPLATE class BaseGPTKeywordTableIndex(BaseGPTIndex[KeywordTable]): """GPT Keyword Table Index. This index extracts keywords from the text, and maps each keyword to the node(s) that it corresponds to. In this sense it mimicks a "hash table". During index construction, the keyword table is constructed by extracting keywords from each node and creating an internal mapping. During query time, the keywords are extracted from the query text, and these keywords are used to index into the keyword table. The retrieved nodes are then used to answer the query. Args: keyword_extract_template (Optional[KeywordExtractPrompt]): A Keyword Extraction Prompt (see :ref:`Prompt-Templates`). use_async (bool): Whether to use asynchronous calls. Defaults to False. """ index_struct_cls = KeywordTable def __init__( self, documents: Optional[Sequence[DOCUMENTS_INPUT]] = None, index_struct: Optional[KeywordTable] = None, keyword_extract_template: Optional[KeywordExtractPrompt] = None, max_keywords_per_chunk: int = 10, llm_predictor: Optional[LLMPredictor] = None, text_splitter: Optional[TextSplitter] = None, use_async: bool = False, **kwargs: Any, ) -> None: """Initialize params.""" # need to set parameters before building index in base class. self.max_keywords_per_chunk = max_keywords_per_chunk self.keyword_extract_template = ( keyword_extract_template or DEFAULT_KEYWORD_EXTRACT_TEMPLATE ) # NOTE: Partially format keyword extract template here. self.keyword_extract_template = self.keyword_extract_template.partial_format( max_keywords=self.max_keywords_per_chunk ) self._use_async = use_async super().__init__( documents=documents, index_struct=index_struct, llm_predictor=llm_predictor, text_splitter=text_splitter, **kwargs, ) @classmethod def get_query_map(self) -> Dict[str, Type[BaseGPTIndexQuery]]: """Get query map.""" return { QueryMode.DEFAULT: GPTKeywordTableGPTQuery, QueryMode.SIMPLE: GPTKeywordTableSimpleQuery, QueryMode.RAKE: GPTKeywordTableRAKEQuery, } @abstractmethod def _extract_keywords(self, text: str) -> Set[str]: """Extract keywords from text.""" async def _async_extract_keywords(self, text: str) -> Set[str]: """Extract keywords from text.""" # by default just call sync version return self._extract_keywords(text) def _build_fallback_text_splitter(self) -> TextSplitter: # if not specified, use "smart" text splitter to ensure chunks fit in prompt return self._prompt_helper.get_text_splitter_given_prompt( self.keyword_extract_template, 1 ) def _add_document_to_index( self, index_struct: KeywordTable, document: BaseDocument ) -> None: """Add document to index.""" nodes = self._get_nodes_from_document(document) for n in nodes: keywords = self._extract_keywords(n.get_text()) index_struct.add_node(list(keywords), n) async def _async_add_document_to_index( self, index_struct: KeywordTable, document: BaseDocument ) -> None: """Add document to index.""" nodes = self._get_nodes_from_document(document) for n in nodes: keywords = await self._async_extract_keywords(n.get_text()) index_struct.add_node(list(keywords), n) def _build_index_from_documents( self, documents: Sequence[BaseDocument] ) -> KeywordTable: """Build the index from documents.""" # do simple concatenation index_struct = KeywordTable(table={}) for d in documents: if self._use_async: tasks = [ self._async_add_document_to_index(index_struct, d) for d in documents ] run_async_tasks(tasks) else: self._add_document_to_index(index_struct, d) return index_struct def _insert(self, document: BaseDocument, **insert_kwargs: Any) -> None: """Insert a document.""" nodes = self._get_nodes_from_document(document) for n in nodes: keywords = self._extract_keywords(n.get_text()) self._index_struct.add_node(list(keywords), n) def _delete(self, doc_id: str, **delete_kwargs: Any) -> None: """Delete a document.""" # get set of ids that correspond to node node_idxs_to_delete = set() for node_idx, node in self._index_struct.text_chunks.items(): if node.ref_doc_id != doc_id: continue node_idxs_to_delete.add(node_idx) for node_idx in node_idxs_to_delete: del self._index_struct.text_chunks[node_idx] # delete node_idxs from keyword to node idxs mapping keywords_to_delete = set() for keyword, node_idxs in self._index_struct.table.items(): if node_idxs_to_delete.intersection(node_idxs): self._index_struct.table[keyword] = node_idxs.difference( node_idxs_to_delete ) if not self._index_struct.table[keyword]: keywords_to_delete.add(keyword) for keyword in keywords_to_delete: del self._index_struct.table[keyword] class GPTKeywordTableIndex(BaseGPTKeywordTableIndex): """GPT Keyword Table Index. This index uses a GPT model to extract keywords from the text. """ def _extract_keywords(self, text: str) -> Set[str]: """Extract keywords from text.""" response, _ = self._llm_predictor.predict( self.keyword_extract_template, text=text, ) keywords = extract_keywords_given_response(response, start_token="KEYWORDS:") return keywords async def _async_extract_keywords(self, text: str) -> Set[str]: """Extract keywords from text.""" response, _ = await self._llm_predictor.apredict( self.keyword_extract_template, text=text, ) keywords = extract_keywords_given_response(response, start_token="KEYWORDS:") return keywords