Spaces:
Runtime error
Runtime error
File size: 13,977 Bytes
8a58cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
# flake8: noqa
import typing
import warnings
import sys
from copy import deepcopy
from dataclasses import MISSING, is_dataclass, fields as dc_fields
from datetime import datetime
from decimal import Decimal
from uuid import UUID
from enum import Enum
from typing_inspect import is_union_type # type: ignore
from marshmallow import fields, Schema, post_load
from marshmallow_enum import EnumField # type: ignore
from marshmallow.exceptions import ValidationError
from dataclasses_json.core import (_is_supported_generic, _decode_dataclass,
_ExtendedEncoder, _user_overrides_or_exts)
from dataclasses_json.utils import (_is_collection, _is_optional,
_issubclass_safe, _timestamp_to_dt_aware,
_is_new_type, _get_type_origin,
_handle_undefined_parameters_safe,
CatchAllVar)
class _TimestampField(fields.Field):
def _serialize(self, value, attr, obj, **kwargs):
if value is not None:
return value.timestamp()
else:
if not self.required:
return None
else:
raise ValidationError(self.default_error_messages["required"])
def _deserialize(self, value, attr, data, **kwargs):
if value is not None:
return _timestamp_to_dt_aware(value)
else:
if not self.required:
return None
else:
raise ValidationError(self.default_error_messages["required"])
class _IsoField(fields.Field):
def _serialize(self, value, attr, obj, **kwargs):
if value is not None:
return value.isoformat()
else:
if not self.required:
return None
else:
raise ValidationError(self.default_error_messages["required"])
def _deserialize(self, value, attr, data, **kwargs):
if value is not None:
return datetime.fromisoformat(value)
else:
if not self.required:
return None
else:
raise ValidationError(self.default_error_messages["required"])
class _UnionField(fields.Field):
def __init__(self, desc, cls, field, *args, **kwargs):
self.desc = desc
self.cls = cls
self.field = field
super().__init__(*args, **kwargs)
def _serialize(self, value, attr, obj, **kwargs):
if self.allow_none and value is None:
return None
for type_, schema_ in self.desc.items():
if _issubclass_safe(type(value), type_):
if is_dataclass(value):
res = schema_._serialize(value, attr, obj, **kwargs)
res['__type'] = str(type_.__name__)
return res
break
elif isinstance(value, _get_type_origin(type_)):
return schema_._serialize(value, attr, obj, **kwargs)
else:
warnings.warn(
f'The type "{type(value).__name__}" (value: "{value}") '
f'is not in the list of possible types of typing.Union '
f'(dataclass: {self.cls.__name__}, field: {self.field.name}). '
f'Value cannot be serialized properly.')
return super()._serialize(value, attr, obj, **kwargs)
def _deserialize(self, value, attr, data, **kwargs):
tmp_value = deepcopy(value)
if isinstance(tmp_value, dict) and '__type' in tmp_value:
dc_name = tmp_value['__type']
for type_, schema_ in self.desc.items():
if is_dataclass(type_) and type_.__name__ == dc_name:
del tmp_value['__type']
return schema_._deserialize(tmp_value, attr, data, **kwargs)
for type_, schema_ in self.desc.items():
if isinstance(tmp_value, _get_type_origin(type_)):
return schema_._deserialize(tmp_value, attr, data, **kwargs)
else:
warnings.warn(
f'The type "{type(tmp_value).__name__}" (value: "{tmp_value}") '
f'is not in the list of possible types of typing.Union '
f'(dataclass: {self.cls.__name__}, field: {self.field.name}). '
f'Value cannot be deserialized properly.')
return super()._deserialize(tmp_value, attr, data, **kwargs)
TYPES = {
typing.Mapping: fields.Mapping,
typing.MutableMapping: fields.Mapping,
typing.List: fields.List,
typing.Dict: fields.Dict,
typing.Tuple: fields.Tuple,
typing.Callable: fields.Function,
typing.Any: fields.Raw,
dict: fields.Dict,
list: fields.List,
tuple: fields.Tuple,
str: fields.Str,
int: fields.Int,
float: fields.Float,
bool: fields.Bool,
datetime: _TimestampField,
UUID: fields.UUID,
Decimal: fields.Decimal,
CatchAllVar: fields.Dict,
}
A = typing.TypeVar('A')
JsonData = typing.Union[str, bytes, bytearray]
TEncoded = typing.Dict[str, typing.Any]
TOneOrMulti = typing.Union[typing.List[A], A]
TOneOrMultiEncoded = typing.Union[typing.List[TEncoded], TEncoded]
if sys.version_info >= (3, 7) or typing.TYPE_CHECKING:
class SchemaF(Schema, typing.Generic[A]):
"""Lift Schema into a type constructor"""
def __init__(self, *args, **kwargs):
"""
Raises exception because this class should not be inherited.
This class is helper only.
"""
super().__init__(*args, **kwargs)
raise NotImplementedError()
@typing.overload
def dump(self, obj: typing.List[A], many: bool = None) -> typing.List[
TEncoded]: # type: ignore
# mm has the wrong return type annotation (dict) so we can ignore the mypy error
pass
@typing.overload
def dump(self, obj: A, many: bool = None) -> TEncoded:
pass
def dump(self, obj: TOneOrMulti,
many: bool = None) -> TOneOrMultiEncoded:
pass
@typing.overload
def dumps(self, obj: typing.List[A], many: bool = None, *args,
**kwargs) -> str:
pass
@typing.overload
def dumps(self, obj: A, many: bool = None, *args, **kwargs) -> str:
pass
def dumps(self, obj: TOneOrMulti, many: bool = None, *args,
**kwargs) -> str:
pass
@typing.overload # type: ignore
def load(self, data: typing.List[TEncoded],
many: bool = True, partial: bool = None,
unknown: str = None) -> \
typing.List[A]:
# ignore the mypy error of the decorator because mm does not define lists as an allowed input type
pass
@typing.overload
def load(self, data: TEncoded,
many: None = None, partial: bool = None,
unknown: str = None) -> A:
pass
def load(self, data: TOneOrMultiEncoded,
many: bool = None, partial: bool = None,
unknown: str = None) -> TOneOrMulti:
pass
@typing.overload # type: ignore
def loads(self, json_data: JsonData, # type: ignore
many: bool = True, partial: bool = None, unknown: str = None,
**kwargs) -> typing.List[A]:
# ignore the mypy error of the decorator because mm does not define bytes as correct input data
# mm has the wrong return type annotation (dict) so we can ignore the mypy error
# for the return type overlap
pass
@typing.overload
def loads(self, json_data: JsonData,
many: None = None, partial: bool = None, unknown: str = None,
**kwargs) -> A:
pass
def loads(self, json_data: JsonData,
many: bool = None, partial: bool = None, unknown: str = None,
**kwargs) -> TOneOrMulti:
pass
SchemaType = SchemaF[A]
else:
SchemaType = Schema
def build_type(type_, options, mixin, field, cls):
def inner(type_, options):
while True:
if not _is_new_type(type_):
break
type_ = type_.__supertype__
if is_dataclass(type_):
if _issubclass_safe(type_, mixin):
options['field_many'] = bool(
_is_supported_generic(field.type) and _is_collection(
field.type))
return fields.Nested(type_.schema(), **options)
else:
warnings.warn(f"Nested dataclass field {field.name} of type "
f"{field.type} detected in "
f"{cls.__name__} that is not an instance of "
f"dataclass_json. Did you mean to recursively "
f"serialize this field? If so, make sure to "
f"augment {type_} with either the "
f"`dataclass_json` decorator or mixin.")
return fields.Field(**options)
origin = getattr(type_, '__origin__', type_)
args = [inner(a, {}) for a in getattr(type_, '__args__', []) if
a is not type(None)]
if _is_optional(type_):
options["allow_none"] = True
if origin in TYPES:
return TYPES[origin](*args, **options)
if _issubclass_safe(origin, Enum):
return EnumField(enum=origin, by_value=True, *args, **options)
if is_union_type(type_):
union_types = [a for a in getattr(type_, '__args__', []) if
a is not type(None)]
union_desc = dict(zip(union_types, args))
return _UnionField(union_desc, cls, field, **options)
warnings.warn(
f"Unknown type {type_} at {cls.__name__}.{field.name}: {field.type} "
f"It's advised to pass the correct marshmallow type to `mm_field`.")
return fields.Field(**options)
return inner(type_, options)
def schema(cls, mixin, infer_missing):
schema = {}
overrides = _user_overrides_or_exts(cls)
# TODO check the undefined parameters and add the proper schema action
# https://marshmallow.readthedocs.io/en/stable/quickstart.html
for field in dc_fields(cls):
metadata = (field.metadata or {}).get('dataclasses_json', {})
metadata = overrides[field.name]
if metadata.mm_field is not None:
schema[field.name] = metadata.mm_field
else:
type_ = field.type
options = {}
missing_key = 'missing' if infer_missing else 'default'
if field.default is not MISSING:
options[missing_key] = field.default
elif field.default_factory is not MISSING:
options[missing_key] = field.default_factory
if options.get(missing_key, ...) is None:
options['allow_none'] = True
if _is_optional(type_):
options.setdefault(missing_key, None)
options['allow_none'] = True
if len(type_.__args__) == 2:
# Union[str, int, None] is optional too, but it has more than 1 typed field.
type_ = [tp for tp in type_.__args__ if tp is not type(None)][0]
if metadata.letter_case is not None:
options['data_key'] = metadata.letter_case(field.name)
t = build_type(type_, options, mixin, field, cls)
# if type(t) is not fields.Field: # If we use `isinstance` we would return nothing.
if field.type != typing.Optional[CatchAllVar]:
schema[field.name] = t
return schema
def build_schema(cls: typing.Type[A],
mixin,
infer_missing,
partial) -> typing.Type["SchemaType[A]"]:
Meta = type('Meta',
(),
{'fields': tuple(field.name for field in dc_fields(cls)
if
field.name != 'dataclass_json_config' and field.type !=
typing.Optional[CatchAllVar]),
# TODO #180
# 'render_module': global_config.json_module
})
@post_load
def make_instance(self, kvs, **kwargs):
return _decode_dataclass(cls, kvs, partial)
def dumps(self, *args, **kwargs):
if 'cls' not in kwargs:
kwargs['cls'] = _ExtendedEncoder
return Schema.dumps(self, *args, **kwargs)
def dump(self, obj, *, many=None):
many = self.many if many is None else bool(many)
dumped = Schema.dump(self, obj, many=many)
# TODO This is hacky, but the other option I can think of is to generate a different schema
# depending on dump and load, which is even more hacky
# The only problem is the catch all field, we can't statically create a schema for it
# so we just update the dumped dict
if many:
for i, _obj in enumerate(obj):
dumped[i].update(
_handle_undefined_parameters_safe(cls=_obj, kvs={},
usage="dump"))
else:
dumped.update(_handle_undefined_parameters_safe(cls=obj, kvs={},
usage="dump"))
return dumped
schema_ = schema(cls, mixin, infer_missing)
DataClassSchema: typing.Type["SchemaType[A]"] = type(
f'{cls.__name__.capitalize()}Schema',
(Schema,),
{'Meta': Meta,
f'make_{cls.__name__.lower()}': make_instance,
'dumps': dumps,
'dump': dump,
**schema_})
return DataClassSchema
|