File size: 3,934 Bytes
8a58cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""Chroma vector store."""
import logging
import math
from typing import Any, List, Optional, cast

from gpt_index.data_structs.data_structs import Node
from gpt_index.utils import truncate_text
from gpt_index.vector_stores.types import (
    NodeEmbeddingResult,
    VectorStore,
    VectorStoreQueryResult,
)


class ChromaVectorStore(VectorStore):
    """Chroma vector store.

    In this vector store, embeddings are stored within a ChromaDB collection.

    During query time, the index uses ChromaDB to query for the top
    k most similar nodes.

    Args:
        chroma_collection (chromadb.api.models.Collection.Collection):
            ChromaDB collection instance

    """

    stores_text: bool = True

    def __init__(self, chroma_collection: Any, **kwargs: Any) -> None:
        """Init params."""
        import_err_msg = (
            "`chromadb` package not found, please run `pip install chromadb`"
        )
        try:
            import chromadb  # noqa: F401
        except ImportError:
            raise ImportError(import_err_msg)
        from chromadb.api.models.Collection import Collection

        self._collection = cast(Collection, chroma_collection)

    @property
    def config_dict(self) -> dict:
        """Return config dict."""
        return {}

    def add(self, embedding_results: List[NodeEmbeddingResult]) -> List[str]:
        """Add embedding results to index.

        Args
            embedding_results: List[NodeEmbeddingResult]: list of embedding results

        """
        if not self._collection:
            raise ValueError("Collection not initialized")

        embeddings = []
        metadatas = []
        ids = []
        documents = []
        for result in embedding_results:
            embeddings.append(result.embedding)
            metadatas.append({"document_id": result.doc_id})
            ids.append(result.id)
            documents.append(result.node.get_text())

        self._collection.add(
            embeddings=embeddings,
            ids=ids,
            metadatas=metadatas,
            documents=documents,
        )
        return ids

    def delete(self, doc_id: str, **delete_kwargs: Any) -> None:
        """Delete a document.

        Args:
            doc_id (str): document id

        """
        self._collection.delete(where={"document_id": doc_id})

    @property
    def client(self) -> Any:
        """Return client."""
        return self._collection

    def query(
        self,
        query_embedding: List[float],
        similarity_top_k: int,
        doc_ids: Optional[List[str]] = None,
    ) -> VectorStoreQueryResult:
        """Query index for top k most similar nodes.

        Args:
            query_embedding (List[float]): query embedding
            similarity_top_k (int): top k most similar nodes

        """
        results = self._collection.query(
            query_embeddings=query_embedding, n_results=similarity_top_k
        )

        logging.debug(f"> Top {len(results['documents'])} nodes:")
        nodes = []
        similarities = []
        ids = []
        for result in zip(
            results["ids"],
            results["documents"],
            results["metadatas"],
            results["distances"],
        ):
            node_id = result[0][0]
            node = Node(
                doc_id=node_id,
                text=result[1][0],
                extra_info=result[2][0],
                ref_doc_id=result[2][0]["document_id"],
            )
            nodes.append(node)

            similarity_score = 1.0 - math.exp(-result[3][0])
            similarities.append(similarity_score)

            logging.debug(
                f"> [Node {result[0][0]}] [Similarity score: {similarity_score}] "
                f"{truncate_text(str(result[1][0]), 100)}"
            )
            ids.append(node_id)

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)